5,515 research outputs found

    AWARE: Platform for Autonomous self-deploying and operation of Wireless sensor-actuator networks cooperating with unmanned AeRial vehiclEs

    Get PDF
    This paper presents the AWARE platform that seeks to enable the cooperation of autonomous aerial vehicles with ground wireless sensor-actuator networks comprising both static and mobile nodes carried by vehicles or people. Particularly, the paper presents the middleware, the wireless sensor network, the node deployment by means of an autonomous helicopter, and the surveillance and tracking functionalities of the platform. Furthermore, the paper presents the first general experiments of the AWARE project that took place in March 2007 with the assistance of the Seville fire brigades

    Network connectivity tracking for a team of unmanned aerial vehicles

    Get PDF
    Algebraic connectivity is the second-smallest eigenvalue of the Laplacian matrix and can be used as a metric for the robustness and efficiency of a network. This connectivity concept applies to teams of multiple unmanned aerial vehicles (UAVs) performing cooperative tasks, such as arriving at a consensus. As a UAV team completes its mission, it often needs to control the network connectivity. The algebraic connectivity can be controlled by altering edge weights through movement of individual UAVs in the team, or by adding and deleting edges. The addition and deletion problem for algebraic connectivity, however, is NP-hard. The contributions of this work are 1) a comparison of four heuristic methods for modifying algebraic connectivity through the addition and deletion of edges, 2) a rule-based algorithm for tracking a connectivity profile through edge weight modification and the addition and deletion of edges, 3) a new, hybrid method for selecting the best edge to add or remove, 4) a distributed method for estimating the eigenvectors of the Laplacian matrix and selecting the best edge to add or remove for connectivity modification and tracking, and 5) an implementation of the distributed connectivity tracking using a consensus controller and double-integrator dynamics

    Autonomous deployment and repair of a sensor network using an unmanned aerial vehicle

    Get PDF
    We describe a sensor network deployment method using autonomous flying robots. Such networks are suitable for tasks such as large-scale environmental monitoring or for command and control in emergency situations. We describe in detail the algorithms used for deployment and for measuring network connectivity and provide experimental data we collected from field trials. A particular focus is on determining gaps in connectivity of the deployed network and generating a plan for a second, repair, pass to complete the connectivity. This project is the result of a collaboration between three robotics labs (CSIRO, USC, and Dartmouth.)
    • …
    corecore