4 research outputs found

    Connectivity aware routing - a method for finding bandwidth constrained paths over a variety of network topologies

    Get PDF
    Multimedia traffic and real-time e-commerce applications can experience quality degradation in traditional networks such as the Internet. These difficulties can be overcome in networks which feature dynamically set up paths with bandwidth and delay guarantees. The problem of selecting such constrained paths is the task of quality of service (QoS) routing. Researchers have proposed several ways of implementing QoS routing, preferring either mechanisms which distribute network load or algorithms which conserve resources. Our previous studies have shown that network connectivity is an important factor when deciding which of these two approaches gives the best performance. In this paper we propose an algorithm, which features both load distribution and resource conservation. It takes a hybrid approach which balances between these two extreme approaches, according to the level of network connectivity. Our simulations indicate that this algorithm offers excellent performance over a than existing algorithms

    Design issues in quality of service routing

    Get PDF
    The range of applications and services which can be successfully deployed in packet-switched networks such as the Internet is limited when the network does nor provide Quality of Service (QoS). This is the typical situation in today's Internet. A key aspect in providing QoS support is the requirement for an optimised and intelligent mapping of customer traffic flows onto a physical network topology. The problem of selecting such paths is the task of QoS routing QoS routing algorithms are intrinsically complex and need careful study before being implemented in real networks. Our aim is to address some of the challenges present m the deployment of QoS routing methods. This thesis considers a number of practical limitations of existing QoS routing algorithms and presents solutions to the problems identified. Many QoS routing algorithms are inherently unstable and induce traffic fluctuations in the network. We describe two new routing algorithms which address this problem The first method - ALCFRA (Adaptive Link Cost Function Routing Algorithm) - can be used in networks with sparse connectivity, while the second algorithm - CAR (Connectivity Aware Routing) - is designed to work well in other network topologies. We also describe how to ensure co-operative interaction of the routing algorithms in multiple domains when hierarchial routing is used and also present a solution to the problems of how to provide QoS support m a network where not all nodes are QoS-aware. Our solutions are supported by extensive simulations over a wide range of network topologies and their performance is compared to existing algorithms. It is shown that our solutions advance the state of the art in QoS routing and facilitate the deployment of QoS support in tomorrow's Internet
    corecore