37,188 research outputs found

    The structure of oppositions in rough set theory and formal concept analysis - Toward a new bridge between the two settings

    Get PDF
    Rough set theory (RST) and formal concept analysis (FCA) are two formal settings in information management, which have found applications in learning and in data mining. Both rely on a binary relation. FCA starts with a formal context, which is a relation linking a set of objects with their properties. Besides, a rough set is a pair of lower and upper approximations of a set of objects induced by an indistinguishability relation; in the simplest case, this relation expresses that two objects are indistinguishable because their known properties are exactly the same. It has been recently noticed, with different concerns, that any binary relation on a Cartesian product of two possibly equal sets induces a cube of oppositions, which extends the classical Aristotelian square of oppositions structure, and has remarkable properties. Indeed, a relation applied to a given subset gives birth to four subsets, and to their complements, that can be organized into a cube. These four subsets are nothing but the usual image of the subset by the relation, together with similar expressions where the subset and / or the relation are replaced by their complements. The eight subsets corresponding to the vertices of the cube can receive remarkable interpretations, both in the RST and the FCA settings. One facet of the cube corresponds to the core of RST, while basic FCA operators are found on another facet. The proposed approach both provides an extended view of RST and FCA, and suggests a unified view of both of them. © 2014 Springer International Publishing

    Mathematics Is Physics

    Full text link
    In this essay, I argue that mathematics is a natural science---just like physics, chemistry, or biology---and that this can explain the alleged "unreasonable" effectiveness of mathematics in the physical sciences. The main challenge for this view is to explain how mathematical theories can become increasingly abstract and develop their own internal structure, whilst still maintaining an appropriate empirical tether that can explain their later use in physics. In order to address this, I offer a theory of mathematical theory-building based on the idea that human knowledge has the structure of a scale-free network and that abstract mathematical theories arise from a repeated process of replacing strong analogies with new hubs in this network. This allows mathematics to be seen as the study of regularities, within regularities, within ..., within regularities of the natural world. Since mathematical theories are derived from the natural world, albeit at a much higher level of abstraction than most other scientific theories, it should come as no surprise that they so often show up in physics. This version of the essay contains an addendum responding to Slyvia Wenmackers' essay and comments that were made on the FQXi website.Comment: 15 pages, LaTeX. Second prize winner in 2015 FQXi Essay Contest (see http://fqxi.org/community/forum/topic/2364
    • …
    corecore