2,622 research outputs found

    Rough matroids based on coverings

    Full text link
    The introduction of covering-based rough sets has made a substantial contribution to the classical rough sets. However, many vital problems in rough sets, including attribution reduction, are NP-hard and therefore the algorithms for solving them are usually greedy. Matroid, as a generalization of linear independence in vector spaces, it has a variety of applications in many fields such as algorithm design and combinatorial optimization. An excellent introduction to the topic of rough matroids is due to Zhu and Wang. On the basis of their work, we study the rough matroids based on coverings in this paper. First, we investigate some properties of the definable sets with respect to a covering. Specifically, it is interesting that the set of all definable sets with respect to a covering, equipped with the binary relation of inclusion \subseteq, constructs a lattice. Second, we propose the rough matroids based on coverings, which are a generalization of the rough matroids based on relations. Finally, some properties of rough matroids based on coverings are explored. Moreover, an equivalent formulation of rough matroids based on coverings is presented. These interesting and important results exhibit many potential connections between rough sets and matroids.Comment: 15page

    A comparison of two types of rough sets induced by coverings

    Get PDF
    Rough set theory is an important technique in knowledge discovery in databases. In covering-based rough sets, many types of rough set models were established in recent years. In this paper, we compare the covering-based rough sets defined by Zhu with ones defined by Xu and Zhang. We further explore the properties and structures of these types of rough set models. We also consider the reduction of coverings. Finally, the axiomatic systems for the lower and upper approximations defined by Xu and Zhang are constructed

    Rough sets based on Galois connections

    Get PDF
    Rough set theory is an important tool to extract knowledge from relational databases. The original definitions of approximation operators are based on an indiscernibility relation, which is an equivalence one. Lately. different papers have motivated the possibility of considering arbitrary relations. Nevertheless, when those are taken into account, the original definitions given by Pawlak may lose fundamental properties. This paper proposes a possible solution to the arising problems by presenting an alternative definition of approximation operators based on the closure and interior operators obtained from an isotone Galois connection. We prove that the proposed definition satisfies interesting properties and that it also improves object classification tasks
    corecore