3,546 research outputs found

    Left-invariant evolutions of wavelet transforms on the Similitude Group

    Get PDF
    Enhancement of multiple-scale elongated structures in noisy image data is relevant for many biomedical applications but commonly used PDE-based enhancement techniques often fail at crossings in an image. To get an overview of how an image is composed of local multiple-scale elongated structures we construct a multiple scale orientation score, which is a continuous wavelet transform on the similitude group, SIM(2). Our unitary transform maps the space of images onto a reproducing kernel space defined on SIM(2), allowing us to robustly relate Euclidean (and scaling) invariant operators on images to left-invariant operators on the corresponding continuous wavelet transform. Rather than often used wavelet (soft-)thresholding techniques, we employ the group structure in the wavelet domain to arrive at left-invariant evolutions and flows (diffusion), for contextual crossing preserving enhancement of multiple scale elongated structures in noisy images. We present experiments that display benefits of our work compared to recent PDE techniques acting directly on the images and to our previous work on left-invariant diffusions on orientation scores defined on Euclidean motion group.Comment: 40 page

    Quantum origin of quantum jumps: Breaking of unitary symmetry induced by information transfer and the transition from quantum to classical

    Full text link
    Measurements transfer information about a system to the apparatus, and then further on -- to observers and (often inadvertently) to the environment. I show that even imperfect copying essential in such situations restricts possible unperturbed outcomes to an orthogonal subset of all possible states of the system, thus breaking the unitary symmetry of its Hilbert space implied by the quantum superposition principle. Preferred outcome states emerge as a result. They provide framework for the ``wavepacket collapse'', designating terminal points of quantum jumps, and defining the measured observable by specifying its eigenstates. In quantum Darwinism, they are the progenitors of multiple copies spread throughout the environment -- the fittest quantum states that not only survive decoherence, but subvert it into carrying information about them -- into becoming a witness.Comment: For comments see Seth Lloyd, NATURE 450, 1167 (2007

    Incoherent control and entanglement for two-dimensional coupled systems

    Full text link
    We investigate accessibility and controllability of a quantum system S coupled to a quantum probe P, both described by two-dimensional Hilbert spaces, under the hypothesis that the external control affects only P. In this context accessibility and controllability properties describe to what extent it is possible to drive the state of the system S by acting on P and using the interaction between the two systems. We give necessary and sufficient conditions for these properties and we discuss the relation with the entangling capability of the interaction between S and P. In particular, we show that controllability can be expressed in terms of the SWAP operator, acting on the composite system, and its square root.Comment: Latex, 13 page

    Quantum Time: experimental multi-time correlations

    Full text link
    In this paper we provide an experimental illustration of Page and Wootters' quantum time mechanism that is able to describe two-time quantum correlation functions. This allows us to test a Leggett-Garg inequality, showing a violation from the "internal" observer point of view. The "external" observer sees a time-independent global state. Indeed, the scheme is implemented using a narrow-band single photon where the clock degree of freedom is encoded in the photon's position. Hence, the internal observer that measures the position can track the flow of time, while the external observer sees a delocalized photon that has no time evolution in the experiment time-scale.Comment: 5 pages, 4 figure
    • …
    corecore