3,897 research outputs found

    Global defensive k-alliances in graphs

    Get PDF
    Let Γ=(V,E)\Gamma=(V,E) be a simple graph. For a nonempty set X⊆VX\subseteq V, and a vertex v∈Vv\in V, δX(v)\delta_{X}(v) denotes the number of neighbors vv has in XX. A nonempty set S⊆VS\subseteq V is a \emph{defensive kk-alliance} in Γ=(V,E)\Gamma=(V,E) if δS(v)≥δSˉ(v)+k,\delta_S(v)\ge \delta_{\bar{S}}(v)+k, ∀v∈S.\forall v\in S. A defensive kk-alliance SS is called \emph{global} if it forms a dominating set. The \emph{global defensive kk-alliance number} of Γ\Gamma, denoted by γka(Γ)\gamma_{k}^{a}(\Gamma), is the minimum cardinality of a defensive kk-alliance in Γ\Gamma. We study the mathematical properties of γka(Γ)\gamma_{k}^{a}(\Gamma)

    Offensive alliances in cubic graphs

    Full text link
    An offensive alliance in a graph Γ=(V,E)\Gamma=(V,E) is a set of vertices S⊂VS\subset V where for every vertex vv in its boundary it holds that the majority of vertices in vv's closed neighborhood are in SS. In the case of strong offensive alliance, strict majority is required. An alliance SS is called global if it affects every vertex in V\SV\backslash S, that is, SS is a dominating set of Γ\Gamma. The global offensive alliance number γo(Γ)\gamma_o(\Gamma) (respectively, global strong offensive alliance number γo^(Γ)\gamma_{\hat{o}}(\Gamma)) is the minimum cardinality of a global offensive (respectively, global strong offensive) alliance in Γ\Gamma. If Γ\Gamma has global independent offensive alliances, then the \emph{global independent offensive alliance number} γi(Γ)\gamma_i(\Gamma) is the minimum cardinality among all independent global offensive alliances of Γ\Gamma. In this paper we study mathematical properties of the global (strong) alliance number of cubic graphs. For instance, we show that for all connected cubic graph of order nn, 2n5≤γi(Γ)≤n2≤γo^(Γ)≤3n4≤γo^(L(Γ))=γo(L(Γ))≤n,\frac{2n}{5}\le \gamma_i(\Gamma)\le \frac{n}{2}\le \gamma_{\hat{o}}(\Gamma)\le \frac{3n}{4} \le \gamma_{\hat{o}}({\cal L}(\Gamma))=\gamma_{o}({\cal L}(\Gamma))\le n, where L(Γ){\cal L}(\Gamma) denotes the line graph of Γ\Gamma. All the above bounds are tight

    Global offensive kk-alliances in digraphs

    Full text link
    In this paper, we initiate the study of global offensive kk-alliances in digraphs. Given a digraph D=(V(D),A(D))D=(V(D),A(D)), a global offensive kk-alliance in a digraph DD is a subset S⊆V(D)S\subseteq V(D) such that every vertex outside of SS has at least one in-neighbor from SS and also at least kk more in-neighbors from SS than from outside of SS, by assuming kk is an integer lying between two minus the maximum in-degree of DD and the maximum in-degree of DD. The global offensive kk-alliance number γko(D)\gamma_{k}^{o}(D) is the minimum cardinality among all global offensive kk-alliances in DD. In this article we begin the study of the global offensive kk-alliance number of digraphs. For instance, we prove that finding the global offensive kk-alliance number of digraphs DD is an NP-hard problem for any value k∈{2−Δ−(D),…,Δ−(D)}k\in \{2-\Delta^-(D),\dots,\Delta^-(D)\} and that it remains NP-complete even when restricted to bipartite digraphs when we consider the non-negative values of kk given in the interval above. Based on these facts, lower bounds on γko(D)\gamma_{k}^{o}(D) with characterizations of all digraphs attaining the bounds are given in this work. We also bound this parameter for bipartite digraphs from above. For the particular case k=1k=1, an immediate result from the definition shows that γ(D)≤γ1o(D)\gamma(D)\leq \gamma_{1}^{o}(D) for all digraphs DD, in which γ(D)\gamma(D) stands for the domination number of DD. We show that these two digraph parameters are the same for some infinite families of digraphs like rooted trees and contrafunctional digraphs. Moreover, we show that the difference between γ1o(D)\gamma_{1}^{o}(D) and γ(D)\gamma(D) can be arbitrary large for directed trees and connected functional digraphs

    On defensive alliances and line graphs

    Get PDF
    Let Γ\Gamma be a simple graph of size mm and degree sequence δ1≥δ2≥...≥δn\delta_1\ge \delta_2\ge ... \ge \delta_n. Let L(Γ){\cal L}(\Gamma) denotes the line graph of Γ\Gamma. The aim of this paper is to study mathematical properties of the alliance number, a(L(Γ){a}({\cal L}(\Gamma), and the global alliance number, γa(L(Γ))\gamma_{a}({\cal L}(\Gamma)), of the line graph of a simple graph. We show that ⌈δn+δn−1−12⌉≤a(L(Γ))≤δ1.\lceil\frac{\delta_{n}+\delta_{n-1}-1}{2}\rceil \le {a}({\cal L}(\Gamma))\le \delta_1. In particular, if Γ\Gamma is a δ\delta-regular graph (δ>0\delta>0), then a(L(Γ))=δa({\cal L}(\Gamma))=\delta, and if Γ\Gamma is a (δ1,δ2)(\delta_1,\delta_2)-semiregular bipartite graph, then a(L(Γ))=⌈δ1+δ2−12⌉a({\cal L}(\Gamma))=\lceil \frac{\delta_1+\delta_2-1}{2} \rceil. As a consequence of the study we compare a(L(Γ))a({\cal L}(\Gamma)) and a(Γ){a}(\Gamma), and we characterize the graphs having a(L(Γ))<4a({\cal L}(\Gamma))<4. Moreover, we show that the global-connected alliance number of L(Γ){\cal L}(\Gamma) is bounded by γca(L(Γ))≥⌈D(Γ)+m−1−1⌉,\gamma_{ca}({\cal L}(\Gamma)) \ge \lceil\sqrt{D(\Gamma)+m-1}-1\rceil, where D(Γ)D(\Gamma) denotes the diameter of Γ\Gamma, and we show that the global alliance number of L(Γ){\cal L}(\Gamma) is bounded by γa(L(Γ))≥⌈2mδ1+δ2+1⌉\gamma_{a}({\cal L}(\Gamma))\geq \lceil\frac{2m}{\delta_{1}+\delta_{2}+1}\rceil. The case of strong alliances is studied by analogy

    Alliance free and alliance cover sets

    Full text link
    A \emph{defensive} (\emph{offensive}) kk-\emph{alliance} in Γ=(V,E)\Gamma=(V,E) is a set S⊆VS\subseteq V such that every vv in SS (in the boundary of SS) has at least kk more neighbors in SS than it has in V∖SV\setminus S. A set X⊆VX\subseteq V is \emph{defensive} (\emph{offensive}) kk-\emph{alliance free,} if for all defensive (offensive) kk-alliance SS, S∖X≠∅S\setminus X\neq\emptyset, i.e., XX does not contain any defensive (offensive) kk-alliance as a subset. A set Y⊆VY \subseteq V is a \emph{defensive} (\emph{offensive}) kk-\emph{alliance cover}, if for all defensive (offensive) kk-alliance SS, S∩Y≠∅S\cap Y\neq\emptyset, i.e., YY contains at least one vertex from each defensive (offensive) kk-alliance of Γ\Gamma. In this paper we show several mathematical properties of defensive (offensive) kk-alliance free sets and defensive (offensive) kk-alliance cover sets, including tight bounds on the cardinality of defensive (offensive) kk-alliance free (cover) sets
    • …
    corecore