610,495 research outputs found

    Distributed Algorithms for Maximizing the Lifetime of Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) are emerging as a key enabling technology for applications domains such as military, homeland security, and environment. However, a major constraint of these sensors is their limited battery. In this dissertation we examine the problem of maximizing the duration of time for which the network meets its coverage objective. Since these networks are very dense, only a subset of sensors need to be in sense or on mode at any given time to meet the coverage objective, while others can go into a power conserving sleep mode. This active set of sensors is known as a cover. The lifetime of the network can be extended by shuffling the cover set over time. In this dissertation, we introduce the concept of a local lifetime dependency graph consisting of the cover sets as nodes with any two nodes connected if the corresponding covers intersect, to capture the interdependencies among the covers. We present heuristics based on some simple properties of this graph and show how they improve over existing algorithms. We also present heuristics based on other properties of this graph, new models for dealing with the solution space and a generalization of our approach to other graph problems

    Bounded-Angle Spanning Tree: Modeling Networks with Angular Constraints

    Full text link
    We introduce a new structure for a set of points in the plane and an angle α\alpha, which is similar in flavor to a bounded-degree MST. We name this structure α\alpha-MST. Let PP be a set of points in the plane and let 0<α≤2π0 < \alpha \le 2\pi be an angle. An α\alpha-ST of PP is a spanning tree of the complete Euclidean graph induced by PP, with the additional property that for each point p∈Pp \in P, the smallest angle around pp containing all the edges adjacent to pp is at most α\alpha. An α\alpha-MST of PP is then an α\alpha-ST of PP of minimum weight. For α<π/3\alpha < \pi/3, an α\alpha-ST does not always exist, and, for α≥π/3\alpha \ge \pi/3, it always exists. In this paper, we study the problem of computing an α\alpha-MST for several common values of α\alpha. Motivated by wireless networks, we formulate the problem in terms of directional antennas. With each point p∈Pp \in P, we associate a wedge WpW_p of angle α\alpha and apex pp. The goal is to assign an orientation and a radius rpr_p to each wedge WpW_p, such that the resulting graph is connected and its MST is an α\alpha-MST. (We draw an edge between pp and qq if p∈Wqp \in W_q, q∈Wpq \in W_p, and ∣pq∣≤rp,rq|pq| \le r_p, r_q.) Unsurprisingly, the problem of computing an α\alpha-MST is NP-hard, at least for α=π\alpha=\pi and α=2π/3\alpha=2\pi/3. We present constant-factor approximation algorithms for α=π/2,2π/3,π\alpha = \pi/2, 2\pi/3, \pi. One of our major results is a surprising theorem for α=2π/3\alpha = 2\pi/3, which, besides being interesting from a geometric point of view, has important applications. For example, the theorem guarantees that given any set PP of 3n3n points in the plane and any partitioning of the points into nn triplets, one can orient the wedges of each triplet {\em independently}, such that the graph induced by PP is connected. We apply the theorem to the {\em antenna conversion} problem
    • …
    corecore