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DISTRIBUTED ALGORITHMS FOR MAXIMIZING THE LIFETIME

OF WIRELESS SENSOR NETWORKS

by

AKSHAYE DHAWAN

Under the direction of Sushil K. Prasad

ABSTRACT

Wireless sensor networks (WSNs) are emerging as a key enabling technology for appli-

cations domains such as military, homeland security, and environment. However, a major

constraint of these sensors is their limited battery. In this dissertation we examine the prob-

lem of maximizing the duration of time for which the network meets its coverage objective.

Since these networks are very dense, only a subset of sensors need to be in “sense” or

“on” mode at any given time to meet the coverage objective, while others can go into a

power conserving “sleep” mode. This active set of sensors is known as a cover. The lifetime

of the network can be extended by shuffling the cover set over time.

In this dissertation, we introduce the concept of a local lifetime dependency graph con-

sisting of the cover sets as nodes with any two nodes connected if the corresponding covers

intersect, to capture the interdependencies among the covers. We present heuristics based on

some simple properties of this graph and show how they improve over existing algorithms.

We also present heuristics based on other properties of this graph, new models for dealing

with the solution space and a generalization of our approach to other graph problems.

INDEX WORDS: Wireless sensor networks, Target coverage, Lifetime, Scheduling
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CHAPTER 1.

INTRODUCTION

Wireless sensor networks (WSNs) have attracted a lot of recent research interest due

to their applicability in security, monitoring, disaster relief and environmental applications.

WSNs consist of a number of low-cost sensors scattered in a geographical area of interest

and connected by a wireless RF interface. Sensors gather information about the monitored

area and send this information to gateway nodes. The radio on board these sensor nodes

has limited range and allows the node to transmit over short distances. In most deployment

scenarios, it is not possible for each node to communicate directly to the sink and hence, the

model of communication is to transmit over short distances to other peers in the direction

of the sink nodes.

In order to keep their cost low, the sensors are equipped with limited energy and com-

putational resources. The energy supply is typically in the form of a battery and once the

battery is exhausted, the sensor is considered to be dead. The nodes also have limited mem-

ory and processing capabilities. Hence, harnessing the potential of these networks involves

tackling a myriad of different issues from algorithms for network operation, programming

models, architecture and hardware to more traditional networking issues. For a more de-

tailed survey on the various computational research aspects of Wireless Sensor Networks, see

the survey papers [4, 18, 36, 59, 57], or the more recent books [35, 44] and a special issue of

the CACM [19].

This dissertation focuses on the algorithmic aspects of Wireless Sensor Networks. Specif-

ically, we look at the problem of covering a set of targets or an area for the longest duration

possible. The next section focuses on a more detailed discussion of the problem and provides

a formal statement for it. It is worth mentioning that there is an abundance of algorithmic

research related to WSNs. A lot of this focuses on traditional distributed computing issues

like localization, fault tolerance, robustness. This naturally raises the interesting question of
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how different are WSNs as a computational model than more traditional distributed com-

puting environments or even ad-hoc networks? This question has been explored briefly in

[64].

One of the underlying themes of this dissertation comes back to this question. In our

experiences on working with designing distributed algorithms for scheduling sensors to maxi-

mize coverage lifetime, we found several distributed algorithms in the literature that applied

common distributed algorithm design principles to this problem. However, our approach

achieved significant improvements over competing algorithms because it was based on a

model of the problem structure. The lesson for us has been that while standard approaches

are a good starting point to various problems in WSNs, these problems usually have a rich

underlying structure, the exploration of which yields better algorithms. Hence, there is a

clear and pressing need for finding good models for these networks that allow the develop-

ment of algorithms for various problems in an efficient way.

1.1 Coverage Problems

Many intended applications of Wireless Sensor Networks involve having the network

monitor a region or a set of targets. To ensure that the area or targets of interest can be

covered, sensors are usually deployed in large numbers by randomly dropping them in this

region. Deployment is usually done by flying an aircraft over the region and air dropping

the sensors. Since the cost of deployment far exceeds the cost of individual sensors, many

more sensors are dropped than needed to minimally cover the region. The leads to a very

dense network and gives rise to an overlap in the monitoring regions of individual sensors.

A simplistic approach to meet the coverage objective would be to turn on all sensors

after deployment. But this needlessly reduces the lifetime of the network since the overlap

between monitoring regions implies that not all sensors need to be on at the same time.

This can also lead to a very lossy network with several collisions happening in the medium

access control (MAC) layer due to the density of nodes. In order to extend the lifetime
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of a sensor network while maintaining coverage, a minimal subset of the deployed sensors

are kept active while the other sensors can sleep. Through some form of scheduling, this

active subset changes over time until there are no more such subsets available to satisfy the

coverage goal. In using such a scheme to extend the lifetime, the problem is two fold. First,

we need to select these minimal subsets of sensors. Then there is the problem of scheduling

them wherein, we need to determine how long to use a given set and which set to use next.

For an arbitrarily large network, there are exponential number of possible subsets making

the problem intractable and it has been shown to be NP-complete in [12, 31].

Existing centralized and distributed heuristics for arriving at a lifetime extending sched-

ule are discussed in Chapter 2. Centralized solutions like those in [61, 12] are based on

assuming that the entire network structure is known at one node (typically the gateway

node), which then computes the schedule for the network. The schedule is computed us-

ing linear programming based algorithms. Like any centralized scheme, it suffers from the

problems of scalability, single point of failure and lack of robustness. The latter is partic-

ularly relevant in the context of sensor networks since sensor nodes are deployed in hostile

environments and are prone to frequent failures.

Existing distributed solutions in [62, 6, 7] work by having a sensor exchange information

with its neighbors (limited to k -hops). These algorithms use information like targets covered

and battery available at each sensor to greedily decide which sensors remain on. Distributed

algorithms are organized into rounds so that the set of active sensors is periodically reshuffled

at the beginning of each round. The problem with these algorithms is that they use simple

greedy criteria to make their decision on which sensors become active at each round and

thus, do not efficiently take into account the problem structure.

We look at coverage problems in much more detail in Chapter 2.
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1.2 Problem Statement

The lifetime problem can be stated as follows. Given a monitored region R, a set of

sensors S and a set of targets T , find a monitoring schedule for these sensors such that

• the total time of the schedule is maximized,

• all targets are constantly monitored, and

• no sensor is in the schedule for longer than its initially battery.

A related problem is that of monitoring an area of interest. In general, the area and

target coverage problems have been shown to be equivalent. [61, 5, 15] provide ways to

map an area to a set of points (targets) . In the work presented in the remainder of this

dissertation, we focus on the target coverage problem with the implicit understanding that

the algorithms and techniques presented can be translated to the area coverage problem by

mapping the area to a set of points (virtial targets) with an appropriate granularity.

There are also several other variations of this basic problem. For example the p% coverage

problem [47] requires only a certain percentage of all targets to be covered. The fault tolerant

k-coverage version of this problem requires each target to be covered by at least k sensors

[72, 40]. Also, the basic problem has been modified to include sensors that have adjustable

sensing ranges, non uniform sensing shapes and othe heterogeneous sensor network models.

1.3 Our Contributions

In this dissertation, we present our work on a framework for the design of distributed

algorithms that extend the lifetime of the network. This work has appeared in [55, 23, 24,

22, 25]. We have also studied centralized solutions for a variation of this problem applied to

sensors with adjustable ranges in [21].

In [55] we focused on the target coverage problem and presented distributed algorithms

for scheduling the sensors to extend the lifetime. We used the idea of constructing local
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cover sets consisting of sensors that can cover local targets. Since certain cover sets are

better than others, we presented a Lifetime Dependency Graph model that enabled us to use

some properties of this graph in order to prioritize these covers. We also showed how other

existing algorithms like [6][7] can be modeled by variations in the prioritizing scheme. We

carried out simulations to show improvements of 10-20% over LBP[6] and similar performance

to DEEPS[7] which is a 2-hop algorithm. A 2-hop version of our algorithm outperformed

DEEPS [7]. This basic algorithm and its results are presented in Chapter 3. This work was

fundamental in that the LD Graph allowed for a new representation of this problem in a

manner that had not been looked at in the literature. This model also formed the basis of

the work that followed in [23, 24, 22, 25].

Chapter 4 is based on our work in [24]. The key motivation behind our approach in this

paper had been to start with the question of what an optimal schedule (OPT ) would do

with the lifetime dependency graph. We were able to prove certain basic properties of the

OPT schedule that relate to the LD graph. Based on these properties, we have designed

algorithms which choose the covers that exhibit these OPT schedule like properties. We

present three new heuristics - Sparse-OPT based on the sparseness of connectivity among

covers in OPT , Bottleneck-Target based on selecting covers that optimize the use of sensors

covering local bottleneck targets, and Even-Target-Rate based on trying to achieve an even

burning rate for all targets. These heuristics are, therefore, designed at a higher level and

operate on top of our above mentioned degree-based heuristics to prioritize the local covers.

Our experiments show an improvement in lifetime of 10-15% over our previous work in [55]

and 25-30% over competing work in the literature [6, 7]. We also implemented two-hop

versions of these heuristics and show that they give around 35% improvement over the two-

hop algorithm of [7]. This work was innovative in that it first exhibited theoretical properties

of the LD Graph and then designed heuristics that try and meet these properties.

In Chapter 5, we address the unresolved question of how to deal with the exponential

space of all possible cover sets. We present a reduction of this exponential space to a linear
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one based on grouping cover sets into equivalence classes. The partition into classes is defined

by the equivalence relation on the set of all sensor covers: Given a set C and an equivalence

relation <, the equivalence class of an element Ci ∈ C is the subset of all elements in C

which are equivalent to Ci. The notation used to represent the equivalence class of Ci is

[Ci]. In the context of the problem being studied, C is the set of all sensor covers and for

any single cover Ci, [Ci] represents all other covers which are equivalent to Ci as given by

the definition of some equivalence relation <. Our approach stems from the understanding

that from the possible exponential number of sensor covers, several covers are very similar,

being only minor variations of each other. We present the definition of the relation <, based

on a grouping that considers cover sets equivalent if their lifetime is bounded by the same

sensor. We then show the use of this relation to collapse the exponential LD Graph into

an Equivalence Class (EC) Graph with linear number of nodes. This theoretical insight

allows us to design a sampling scheme that selects a subset of all local covers based on their

equivalence class properties and presents this as an input to our simple LD graph degree-

based heuristic. Simulation results show that class based sampling cuts the running time of

these heuristics by nearly half, while only resulting in a less than 10% loss in quality.

In Chapter 6, based on [23, 25] we extend our work on target coverage and present

a generalized framework that can be applied to graph and network problems that exhibit

certain properties. We also showed the use of this framework in solving the area and k-

coverage problems. This work shows the general applicability of modeling dependencies

into a graph and then designing distributed algorithms based on this. We also examine the

application of this framework to the Independent Set problem and show its representation

in our framework.

Chapter 7, presents a new model for sensing wherein sensors can smoothly adjust their

sensing ranges in a given range. This model accurately reflects the capability of existing

sensor hardware and allows a sensor to reduce its range to cover only those targets that are

necessary, thereby saving energy. We present centralized and distributed algorithms for tar-
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get coverage in this model that show improvements over their fixed range counterparts. The

centralized algorithms in this chapter were published in [21].We also present two distributed

algorithms ADEEPS and ALBP which are extensions of the LBP and DEEPS algorithms to

the adjustable range model introduced by us.

Finally, we conclude and discuss future work in Chapter 8.
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CHAPTER 2.

RELATED WORK

In this section, we briefly survey existing approaches to maximizing the lifetime of sensor

networks, while meeting certain coverage objectives. [9] gives a more detailed survey on the

various coverage problems and the scheduling mechanisms they use. [58] also surveys the

coverage problem along with other algorithmic problems relevant to sensor networks. We

end this section by focusing on two algorithms, LBP [6] and DEEPS [7], since we use them

for comparisons against our algorithms.

A key application of wireless sensor networks is the collection of data for reporting. There

are two types of data reporting scenarios: event-driven and on-demand [15]. Event-driven

reporting occurs when one or more sensor nodes detect an event and report it to the sink.

In on-demand reporting, the sink initiates a query and the nodes respond with data to this

query.

Coverage problems essentially state how well a network observes its physical space. As

pointed out in [50], coverage is a measure of the quality of service (QoS) for the WSN.

The goal is to have each point of interest monitored by at least one sensor at all times.

In some applications, it may be a requirement to have more than one sensor monitor a

target for achieving fault tolerance. Typically, nodes are randomly deployed in the region of

interest because sensor placement is infeasible. This means that more sensors are deployed

than needed to compensate for the lack of exact positioning and to improve fault tolerance in

harsh environments. The question of placing an optimal number of sensors in a deterministic

deployment has been looked at in [38, 26, 54]. However, in this dissertation we focus on

networks with very dense deployment of sensors so that there is significant overlap in the

targets each sensor monitors. This overlap will be exploited to schedule sensors into a low

power sleep state so as to improve the lifetime of these networks. Note that this definition
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of the network lifetime is different from some other definitions which measure this in terms

of number of operations the network can perform [33].

The reason for wanting to schedule sensors into sense-sleep cycles that we talked about

in Chapter 1, stems from the fact that sensor nodes have four states - transmit, receive, idle

and sleep. As shown in [56] for the WINS Rockwell sensor, the transmit, receive and idle

states all consume much more power than the sleep state - hence, it is more desirable for

a sensor to enter a sleep state to conserve its energy. The goal behind sensor scheduling

algorithms is to select the activity state of each sensor so as to allow the network as a whole

to monitor its points of interest for as long as possible. For a more detailed look at power

consumption models for ad-hoc and sensor networks we refer the reader to [29, 28, 37]. We

now look at coverage problems in more detail.

2.1 Coverage Problems in Other Areas

Coverage problems have long existed in other fields of work. In this section, we briefly

survey major results on coverage in a context outside that of sensor networks.

The Art Gallery Problem [53], looks at the question of deploying observers in an art-

gallery such that every point in the room is seen by at least one observer. There is a linear

time solution provided for the 2D case but the 3D version of the problem is shown to be

NP=hard and an approximation algorithm is given in [48].

[34] looks at problem of covering an ocean for satellited based monitoring of phytoplank-

ton abundance. They show that having three satellites observe the region and merging their

data results in 50 % improvements in coverage but adding more satellites produce minimal

improvements over this.

Coverage has also been looked at in robot-systems by [30]. The author introduces the

notions of blanket, barrier and sweep coverage. Blanket coverage attempts to maximize

the total area covered. Barrier coverage arranges nodes in a manner that minimizes the

probability of undetected intrusion. Sweep coverage is a mobile barrier detection problem.



10

Table 2.1. Centralized Algorithms

Name Area/Target Disjoint Main Idea

Abrams, Goel [3] Area Yes Greedy: Max uncovered area

Meguerdichian [52] Area No Integer Linear Program

Cardei [12] Target Yes Mixed Integer Programming

Shah [5] Area Yes LP, Garg Könemann

Cardei [8] Target No Integer Linear Program

In particular, the definition of barrier coverage introduced here has been used in the context

of barrier coverage for wireless sensor networks in [43, 27, 50, 51, 68].

2.2 Coverage Problems in Wireless Sensor Networks

The maximum lifetime coverage problem has been shown to be NP-complete in [3, 12].

Initial approaches to the problem in [61, 12, 3] considered the problem of finding the maxi-

mum number of disjoint cover sets of sensors. This allowed each cover to be used indepen-

dently of others. However, [8, 5] and others showed that using non-disjoint covers allows the

lifetime to be extended further and this approach has been adopted since.

Broadly speaking, the existing work in this category can be classified into two parts -

Centralized Algorithms and Distributed Algorithms. For centralized approaches, the as-

sumption is that a single node (usually the base station) has access to the entire network

information and can use this to compute a schedule that is then uploaded to individual

nodes. Distributed Algorithms work on the premise that a sensor can exchange information

with its neighbors within a fixed number of hops and use this to make scheduling decisions.

We now look at the individual algorithms in both these areas.

A common approach taken with centralized algorithms is that of formulating the problem

as an optimization problem and using linear programming (LP) to solve it [52, 12, 5, 21]. In

[61], the authors develop a most-constrained least-constraining heuristic and demonstrated

its effectiveness on variety of simulated scenarios. In this heuristic, the main idea is to

minimize the coverage of sparsely covered areas within one cover. Such areas are identified



11

using the notion of the critical element, defined as the element which is a member of the

smallest number of sets. Their heuristic favors sets that cover a high number of uncovered

elements, that cover more sparsely covered elements, that do not cover the area redundantly

and that redundantly cover the elements that do not belong to sparsely covered areas. [52]

is a followup work by the same authors in which they formulate the area coverage problem

using a Integer LP and relax it to obtain a solution. They also presented several ILP

based formulations and strategies to reduce overall energy consumption while maintaining

guaranteed sensor coverage levels. Additionally, their work demonstrated the practicality

and effectiveness of these formulations on a variety of examples and provided comparisons

with several alternative strategies. They also show that the ILP based technique can scale

to large and dense networks with hundreds of sensor nodes.

In order to solve the target coverage problem, [12] considers the disjoint cover set ap-

proach. Modeling their solution as a Mixed Integer Program shows an improvement over [61].

The authors define the disjoint set covers (DSC) problem and prove its NP-completeness.

They also prove that any polynomial-time approximation algorithm for DSC problem has a

lower bound of 2. They first transform DSC into a maximum-flow problem (MFP), which

is then formulated as a mixed integer programming. Based on the solution of the MIP, the

authors design a heuristic to compute the number of covers. They evaluate the performance

by simulation, against the most constrainedminimally constraining heuristic proposed in [61]

and found that their heuristics has a larger number of covers (larger lifetime) at the cost of

a greater running time.

[5] formulates a packing LP for the coverage problem. Using the (1 + ε) Garg-Könemann

approximation algorithm [32], they provide a (1+ε)(1+2lnn) approximation of the problem.

They also present an efficient data structureto represent the monitored area with at most

n2 points guaranteeing the full coverage which is superior to the previously used approach

based on grid points in [61]. They also present distributed algorithms that tradeoff between
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monitoring and power consumption but these are improved upon by the authors in LBP and

DEEPS.

A similar problem is solved by us for sensors with adjustable ranges in [21]. We present

a linear programming based formulation that also uses the (1 + ε) Garg-Könemann approxi-

mation algorithm [32]. The main difference is the introduction of an adjustable range model

that allows sensors to vary their sensing and communication ranges smoothly. This was the

first model that allows sensors to vary their range to any value upto a maximum. The model

is an accurate representation of physical sensors and allows significant power savings over

the discreetly varying adjustable model.

A different algorithm to work with disjoint sets is given in [13]. Disjoint cover sets are

constructed using a graph coloring based algorithm that has area coverage lapses of about

5%. The goal of their heuristic is to achieve energy savings by organizing the network into a

maximum number of disjoint dominating sets that are activated successively. The heuristic

to compute the disjoint dominating sets is based on graph coloring. Simulation studies are

carried out for networks of large sizes.

[3] also gives a centralized greedy algorithm that picks sensors based the largest uncovered

area. They have designed three approximation algorithms for a variation of the SET K-

COVER problem, where the objective is to partition the sensors into covers such that the

number of covers that include an area, summed over all areas, is maximized. The first

algorithm is randomized and partitions the sensors within a fraction of the optimum. The

other two algorithms are a distributed greedy algorithm and a centralized greedy algorithm.

The approximation ratios are presented for each of these algorithms.

[8] also deal with the target coverage problems. Like similar algorithms, they also extend

the sensor network life time by organizing the sensors into a maximal number of set covers

that are activated successively. But they allow non-disjoint set covers. The authors model

the solution as the maximum set covers problem and design two heuristics that efficiently

compute the sets, using linear programming and a greedy approach. The greedy algorithm
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Table 2.2. Distributed Algorithms

Name Area/Target Disjoint Main Idea

Sliepcivic [61] Area Yes Greedy: Max uncovered
fields

Tian [62] Area No Geometric calculation of
sponsored area

PEAS [67] Area No Probing based determina-
tion of sponsored area

CCP [66] Area No Random timers to evaluate
coverage requirements

OGDC [69] Area No Random back off node vol-
unteering

Lu [45] Area No Highest overall denomina-
tion sensor picks

Abrams [3] Area Yes Randomized, Greedy picks
max uncovered area

Cardei et al. [8] Target No Sensor with highest contri-
bution to bottleneck

LBP [6] Target No Targets are covered by
higher energy nodes

DEEPS [7] Target No Minimize energy consump-
tion for bottleneck target
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selects a critical target at each step. This is the least covered target. For the greedy selection

step, the sensor with the greatest contribution to the critical target is selected.

The distributed algorithms in the literature can be further classified into greedy, random-

ized and other techniques. The greedy algorithms [61, 45, 3, 8, 6, 7] all share the common

property of picking the set of active sensors greedily based on some criteria. [61] considers

the area coverage problem and introduces the notion of a field as the set of points that are

covered by the same set of sensors. The basic approach behind the picking of a sensor is to

first pick the one that covers that largest number of previously uncovered fields and to then

avoid including more than one sensor that covers a sparsely covered field. [3] builds on this

work and presents three algorithms that solve variations of the set k-cover problem. The

greedy heuristic they propose works by selecting the sensor that covers the largest uncovered

area. [45] defines the sensing denomination (SD) of a sensor as its contribution, i.e., the

area left uncovered when the sensor is removed. The authors assume that each sensor can

probabilistically detect a nearby event, and build a probabilistic model of network coverage

by considering the data correlation among neighboring sensors. The more the contribution

of a sensor to the network coverage, the higher the sensors SD is. Based on the location

information of neighboring sensors, each sensor can calculate its SD value in a distributed

manner. Sensors with higher sensing denomination have a higher probability of remaining

active.

[5] gives a distributed algorithm based on using the faces of the graph. If all the faces

that a sensor covers are covered by other sensors with higher battery that are in an active or

deciding state, then a sensor can switch off (sleep). Their work has been extended to target

coverage in the load balancing protocol (LBP).

Some distributed algorithms use randomized techniques. Both OGDC [69] and CCP

[66] deal with the problem of integrating coverage and connectivity. They show that if the

communication range is at least twice the sensing range, a covered network is also connected.

[69] uses a random back off for each node to make nodes volunteer to be the start node.
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OGDC addresses the issues of maintaining sensing coverage and connectivity by keeping a

minimum number of sensor nodes in the active mode in wireless sensor networks. They

investigate the relationship between coverage and connectivity. They also derive, under the

ideal case in which node density is sufficiently high, a set of optimality conditions under which

a subset of working sensor nodes can be chosen for complete coverage. OGDC algorithm is

fully localized and can maintain coverage as well as connectivity, regardless of the relationship

between the radio range and the sensing range. OGDC achieves similar coverage with an

upto 50% improvement in the lifetime of the network. A drawback of OGDC is that it

requires that each node knows its own location.

In [49] the authors combine computational geometry with graph theoretic techniques.

The use Voronoi diagrams with graph search to design a polynomial time worst and average

case algorithm for coverage calculation in homogeneous isotropic sensors. The also analyze

and experiment with using these techniques as heuristics to improve coverage.

[66] sets a random timer for each node following which a node evaluates its current state

based on the coverage by its neighbors. The authors present a Coverage Configuration

Protocol (CCP) that can provide different degrees of coverage requested by applications.

This flexibility allows the network to self-configure for a wide range of applications. They

also integrate CCP to SPAN [17, 16] to provide both coverage and connectivity guarantees.

[3] also present a randomized algorithm that assigns a sensor to a cover chosen uniformly at

random.

A different approach has been taken in PEAS [67, 62]. PEAS is a distributed algorithm

with a probing based off-duty rule is given in [67]. PEAS is localized and has a high resilience

to node failure and topology changes. Here, every sensor broadcasts a probe PRB packet

with a probing range γ. Any working node that hears this probe packet responds. If a

sensor receives at least one reply, it can go to sleep. The range can be chosen based on

several criteria. Note that this algorithm does not preserve coverage over the original area.

The results for PEAS showed an increase in the network lifetime in linear proportion to the
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number of deployed nodes. In [62] the authors give a distributed and localized algorithm.

Every sensor has an off-duty eligibility rule. They give an algorithm for a node to compute

its sponsored area. To prevent the occurrence of blind-points by having two sensors switch

off at the same time, a random back off is used. They show improved performance over

PEAS.

To our knowledge, [66] was the first work to consider the k -coverage problem. [40] also

addresses the k -coverage problem from the perspective of choosing enough sensors to ensure

coverage. Authors consider different deployments with sensors given a probability of being

active and obtain bounds for deployment. [72] solves the problem of picking minimum

size connected k -covers. The authors state this as an optimization problem and design a

centralized approximation algorithm that delivers a near-optimal solution. They also present

a communication-efficient localized distributed algorithm for this problem.

Now, we look at the two protocols that we compare our heuristics against. The load

balancing protocol (LBP) [6] is a simple 1-hop protocol which works by attempting to bal-

ance the load between sensors. Sensors can be in one of three states sense/on, sleep/off or

vulnerable/undecided. Initially all sensors are vulnerable and broadcast their battery levels

along with information on which targets they cover. Based on this, a sensor decides to switch

to off state if its targets are covered by a higher energy sensor in either on or vulnerable

state. On the other hand, it remains on if it is the sole sensor covering a target. This is

an extension of the work in [5]. LBP is simplistic and attempts to share the load evenly

between sensors instead of balancing the energy for sensors covering a specific target.

The other protocol we consider is DEEPS [7]. The maximum duration that a target

can be covered is the sum of the batteries of all its nearby sensors that can cover it and is

known as the life of a target. The main intuition behind DEEPS is to try to minimize the

energy consumption rate around those targets with smaller lives. A sensor thus has several

targets with varying lives. A target is defined as a sink if it is the shortest-life target for

at least one sensor covering that target. Otherwise, it is a hill. To guard against leaving
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a target uncovered during a shuffle, each target is assigned an in-charge sensor. For each

sink, its in-charge sensor is the one with the largest battery for which this is the shortest-life

target. For a hill target, its in-charge is that neighboring sensor whose shortest-life target

has the longest life. An in-charge sensor does not switch off unless its targets are covered by

someone. Apart from this, the rules are identical as those in LBP protocol. DEEPS relies

on two-hop information to make these decisions.
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CHAPTER 3.

THE LIFETIME DEPENDENCY GRAPH MODEL

In this chapter, we introduce the Lifetime Dependency (LD) Graph as a model for the

maximum lifetime coverage problem defined in Section 1.2. This model is a key contribution

of this dissertation since the heuristics and algorithms that follow in subsequent chapters

rely heavily on the LD Graph.

Recall from Section 1.2 that given a sensor network and a set of static targets, the

maximum lifetime sensor scheduling problem is to select a subset of sensors that covers all

targets and then periodically shuffle the members of this subset so as to maximize the total

time for which the network can cover all targets.

Since these sensors are powered by batteries, energy is a key constraint for these networks.

Once the battery has been exhausted, the sensor is considered to be dead. The lifetime of the

network is defined as the amount of time that the network can satisfy its coverage objective,

i.e., the amount of time that the network can cover its area or targets of interest. Having all

the sensors remain “on” would ensure coverage but this would also significantly reduce the

lifetime of the network as the nodes would discharge quickly. A standard approach taken

to maximizing the lifetime is to make use of the overlap in the sensing regions of individual

sensors caused by the high densit y of deployment. Hence, only a subset of all sensors need

to be in the “on” or “sense” state, while the other sensors can enter a low power “sleep” or

“off” state. The members of this active set, also known as a cover set, are then periodically

updated so as to keep the network alive for longer duration. In using such a scheduling

scheme, there are two problems that need to be addressed. First, we need to determine how

long to use a given cover set and then we need to decide which set to use next. This problem

has been shown to be NP-complete [3, 12].

A key problem here is that since a sensor can be a part of multiple covers, these covers

have an impact on each other, as using one cover set reduces the lifetime of another set that
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has sensors common with it. By making greedy choices, the impact of this dependency is

not being considered, since none of the heuristics in the literature study this reduction in

the lifetime of other cover sets caused by using a sensor that is a member of several such

sets. The earlier disjoint formulations mentioned in the previous chapter, entirely avoided

this problem by preventing it.

We capture this dependency between covers by introducing the concept of a local Lifetime

Dependency (LD) Graph. This consists of the cover sets as nodes with any two nodes

connected if the corresponding covers intersect. The graph is an example of an intersection

graph since it represents the sensors common to different cover sets. By looking at the graph

locally (fixed 1-2 hop neighbors), we are able to construct all the local covers for the local

targets and then model their dependencies. Based on these dependencies, a sensor can then

prioritize its covers and negotiate these with its neighbors. We also present some simple

heuristics based on the graph. The material presented in this chapter was published in [55].

3.1 Symbols and Definitions

Let us begin with a few basic conventions and definitions that will be used in the rest

of this dissertation. Individual chapters will introduce additional notation as and when

necessary. The notation presented here applies to the basic LD grapg model and will be

utilized for all the chapters that follow.

We will use s1, s2, etc., to represent sensors, t1, t2, etc., to represent targets, and C, C ′,

etc., to denote covers.

Let us assume we have n sensors and m targets, both stationary.

Consider the sensor network in Figure 3.1 with n = 8, s = {s1, s2, ..., s8} and m = 3

targets, t1, t2, and t3.
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Figure 3.1. A sensor network

We will employ the following definitions, illustrated using this network.

• b(s): strength of the battery of sensor s; for example, b(s1) = 3 while b(s3)= 1.

• T (s): set of targets that sensor s can sense; e.g., T (s1) = {t1, t2};

• N(s, k): closed set of neighbors of sensor s at no more than k hops (i.e, those neighbors

that s can communicate with using ≤ k hops) - this contains s itself; thus, N(s1, 1) =

{s1, s2, s3, s4, s5}.

• Cover: C is a cover for targets in set T if

(i) for each target t ∈ T there is at least one sensor in C which can sense t and

(ii) C is minimal. For example, the possible (minimal) covers for the two targets of

s1 are {s1}, {s2, s3}, {s2, s4} and {s2, s5}. There are other non-minimal covers as well

such as s1, s2 which need to be avoided. Likewise, the possible covers for the only

target of sensor s3 are {s1}, {s3}, {s4} and {s5}.

• lt(C) = mins∈Cb(s), the maximum lifetime of a cover. The bottleneck sensor of the

cover {s2, s3} is s3 with the weakest battery of 1. Therefore, lt({s2, s3}) = 1.
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An optimal lifetime schedule of length 6 for this network is ({s1, s6}, 1), ({s1, s7}, 1), ({s1, s8}, 1),

({s2, s3}, 1), ({s2, s4}, 1), ({s2, s5}, 1)) where each tuple is a cover for the entire network fol-

lowed by its duration.

3.2 Lifetime dependency (LD) Graph

Let the local lifetime dependency graph be G = (V,E) where nodes in V denote the local

covers and edges in E exist between those pairs of nodes whose corresponding covers share

one or more common sensors. For simplicity of reference, we will not distinguish between a

cover C and the node representing it, and an edge e between two intersecting covers C and

C ′ and the intersection set C
⋂
C ′. Each sensor constructs its local LD graph considering its

one- or two-hop neighbors and the corresponding targets. Figure 3.2 shows the local lifetime

dependency graph of sensor s1 in the example network of Figure 3.1, considering its one-hop

neighbors N(s1, 1) and its targets T (s1).

In the LD graph, we will use the following two definitions:

• w(e) = mins∈eb(s), the weight of an edge e (if e does not exist, i.e., if e is empty, then

w(e) is zero).

• d(C) =
∑

e∈E and incident to C w(e), the degree of a cover C.

Figure 3.2. The local lifetime dependency graph of sensor s1

In Figure 3.2, the two local covers {s2, s3} and {s2, s4} for the targets of sensor s1 have s2

in common, therefore the edge between the two covers is {s2} and w({s2}) = 3. Therefore,s2’s
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battery of 3 is an upper bound on the lifetime of the two covers collectively. It just so happens

that the individual lifetimes of these covers are each 1 due to their bottleneck sensors and,

therefore, a tighter upper bound on their total life is 2. In general, given two covers C and

C ′, a tight upper bound on the life of two covers is min(lt(C) + lt(C ′), w(C
⋂
C ′)).

3.3 The Basic Algorithm

For the purpose of this explanation, without loss of generality, let us assume that the cov-

ers are constructed over one-hop neighbors. The algorithm consists of two phases. During the

initial setup phase, each sensor calculates and prioritizes the covers. Then, for each reshuffle

round of predetermined duration, each sensor decides its on/off status at the beginning, and

then those chosen remain on for the rest of the duration.

Initial setup: Each sensor s communicates with each of its neighbor s′ ∈ N(s, 1) ex-

changing mutual locations, battery levels b(s) and b(s′), and the targets covered T (s) and

T (s′). Then it finds all the local covers using the sensors in N(s, 1) for the target set being

considered. The latter can be solely T (s) or could also include T (s′) for all s′ ∈ N(s, 1). It

then constructs the local LD graph G = (V,E) over those covers, and calculates the degree

d(C) of each cover C ∈ V in the graph G.

The “priority function” of a cover is based on its degree (lower the better). Ties among

covers with same degree are broken first by preferring (i) those with longer lifetimes, then

(ii) those which have fewer remaining sensors to be turned on, and finally (iii) by choosing

the cover containing the smaller sensor id. A cover which has a sensor turned off becomes

infeasible and falls out of contention. Also, a cover whose lifetime falls below the duration

of a round is taken out of contention, unless it is the only cover remaining.

Reshuffle rounds: The automaton in Figure 3.3 captures the algorithm for this phase.

A sensor s starts with its highest priority cover C as its most desirable configuration for its

neighborhood. If successful, the end result would be switching on all the sensors in C, while
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Figure 3.3. The state transitions to decide the On-Off Status

others can sleep. Else, it transitions to the next best priority cover C ′, C ′′, etc., until a cover

gets satisfied. The transitions are as follows.

- Continue with the best cover C: Sensor s continues with its current best cover C if its

neighbor s′ /∈ C goes off (thus not impacting the chances of ultimately satisfying C) or if

neighbor s′ ∈ C becomes on (thus improving chances for C).

- To on/sense status: If all the neighboring sensors in cover C except s become on, s

switches itself on satisfying the cover C for its neighborhood, and sends its on-status to its

neighbors.

- To off/sleep status: If all the neighboring sensors in cover C become on thus satisfying

C, and s itself is not in cover C, s switches itself off, and sends its off-status to its neighbors.

- Transition to the next best cover C ′: Sensor s transitions to the next best priority cover

C ′, if (i) C becomes infeasible because a neighboring sensor s′ ∈ C has turned off, or (ii)

priority of C is now lower because a sensor s′ /∈ C has turned on causing another cover C ′,

with same degree and lifetime as C, with fewer sensors remaining to be turned on.

The transitions from C ′ are analogous to that from C, with the possibility of even going

back to C.
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Correctness: We sketch a proof here that this algorithm ensures that, in each reshuffle

round, all the targets are covered and the algorithm itself terminates enabling each sensor

to decide and reach on/off status.

For contradiction, let us assume that in a given round a target t remains uncovered.

This implies that either this target has no neighboring sensor within sensing range and thus

network itself is dead, or else all the neighboring sensors which could have covered t have

turned off. In the latter case, each of the sensor s whose T (s) contains t has made the

transition from its current best cover C to off status. However, s only does that if C covers

all its targets in T (s) and s /∈ C. The last such sensor s to have turned off ensures that C

is satisfied, which implies that all targets in T (s) including t are covered, a contradiction.

Next, for contradiction, let us assume that the algorithm does not terminate. This implies

that there exists at least one sensor s which is unable to decide, i.e., make a transition to

either on or off status. There are three possibilities: (i) all the covers of s have become

infeasible, or

(ii) s is continually transitioning to the next best cover and none of them are getting

satisfied, or

(iii) s is stuck at a cover C.

For case (i), for each cover C, at least one of its sensor s′ ∈ C has turned off. But the

set of targets considered by sensor s is no larger than T ′ =
⋃
s′∈N(s,1) T (s′). Since s itself can

cover T (s), there exist a target t ∈ T ′ − T (s), from T (s′), that none of the cover sets at s

are able to cover. This implies that s′ is off, else {s, s′} would have formed part of a cover

at s covering t (given that s constructs all possible covers). This leads to the contradiction,

as before turning off, s′ ensures that t ∈ T (s′) is covered.

For case (ii), each transition implies that a neighbor sensor has decided its on/off status,

thereby making some of the covers at s infeasible and increasingly satisfying portions of some

other covers, thus reducing the choices from the finite number of its covers. Eventually, when
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the last neighbor decides, s will be able to decide as well becoming on if any target in T (s)

is still uncovered, else going off.

For case (iii), the possibility that all sensors are stuck at their best initial covers is

conventionally broken by a sensor s ∈ C with least id in its current best cover C pro actively

becoming on, even though C may not be completely satisfied. This is similar to the start-

up problem faced by others distributed algorithms such as DEEPS with similar deadlock

breaking solutions. At a later stage, if s is stuck at C, it means that either all its neighbors

have decided or one or more neighbors are all stuck. In the former case, there exists a cover

C at s which will be satisfied with s becoming on (case i). The latter case is again resolved

by the start-up deadlock breaking rule by either s or s′ pro actively becoming on.

Message and time complexities: Let us assume that each sensor s constructs the

covers over its one-hop neighbors to cover its targets in T (s) only. Let S = {s1, s2, ..., sn}

∆ =maxs∈S |N(s, 1)|, the maximum number of neighbors a sensor can communicate with.

The communication complexity of the initial setup phase is O(∆), assuming that there

are constant number of neighboring targets that each sensor can sense. Also, for each

reshuffle round, a sensor receives O(∆) status messages and sends out one. Assuming ∆

is a constant practically implies that message complexity is also a constant. Let maximum

number of targets a sensor considers is τ =maxs∈S |T (s)|, a constant. The maximum number

of covers constructed by sensor s during its setup phase is O(∆τ ), as each sensor in N(s,1)

can potentially cover all its targets considered. Hence the time complexity of setup phase

is O((∆τ )2) to construct the LD graph over all covers and calculate the priorities. For

example, if τ = 3, the time complexity of the setup phase would be O(∆6). The reshuffle

rounds transition through potentially all the covers, hence their time complexity is O(∆τ ).

3.4 Variants of the Basic Algorithm

We briefly discussed some of the properties of the LD graph earlier. For example, an

edge e connecting two covers C and C ′ yields an upper bound on the cumulative lifetime of
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both the covers. However, if w(e), which equals b(s) for weakest sensor s ∈ e, is larger than

the sum of the lifetimes of C and C ′, then the edge e no longer constrains the usage of C

and C ′. Therefore, even though C and C ′ are connected, they do not influence each other’s

lifetimes. This leads to our first variant algorithm.

Variant 1 : Redefine the edge weight e as follows:

If mins∈eb(s) < lt(C) + lt(C ′), then w(e) = mins∈eb(s), else w(e) = 0.

Thus, when calculating the degree of a cover, this edge would not be counted when not

constraining, thus elevating the cover’s priority. Next, the basic framework is exploiting the

degree of a cover to heuristically estimate how much it impacts other covers, and the overall

intent is to minimize its impact. Therefore, we sum the edge weights emanating from a cover

for its degree. However, if a cover C is connected to two covers C ′ and C ′′ such that both C ′

and C ′′ have the same bottleneck sensor s, s is depleted by burning either C ′ or C ′′. That

is, in a sense, only one of C ′ and C ′′ can really be burned completely, and then the other

is rendered unusable because s is completely depleted. Therefore, for all practical purposes,

C ′ and C ′′ can be collectively seen as one cover. As such, the two edges connecting C to C ′

and C ′′ can be thought of as one as well. This yields our second variant algorithm.

Variant 2 : Redefine the degree of a cover C in the LD graph as follows. Let a cover C

be connected to a set of covers V ′ = C1, C2, , Cq in graph G. If there are two covers Ci and

Cj in V ′ sharing a bottleneck sensor s, then if w(C,Ci) < w(C,Cj) then V ′ = V ′ − Cj else

V ′ = V ′ − Ci. With this reduced set of neighboring covers V ′, the degree of cover C is

d(C) =
∑

C′∈V ′ w(C,C ′)

In the basic algorithm, each sensors constructs cover sets using its one-hop neighbors

to cover its direct targets T (s). However, with the same message overheads and slightly

increased time complexity, a sensor can also consider its neighbors’ targets. This will enable

it to explore the constraint space of its neighbors as well.
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Variant 3 : In this variant, each sensor s constructs LD graph over one-hop neighbors

N(s, 1) and targets in
⋃
s′∈N(s,1) T (s′).

Variant 4 : In the basic two-hop algorithm, each sensor s constructs LD graph over two-

hop neighbors N(s, 2) and targets in
⋃
s′∈N(s,1) T (s′). In this variant, each sensor s constructs

LD graph over two-hop neighbors N(s, 2) and targets in
⋃
s′∈N(s,2) T (s′).

3.5 Representing Existing Algorithms in the LD Graph Model

We now focus on two existing approaches LBP [6] and DEEPS [7], show how they operate

on an example topology and then present their equivalent representation in the lifetime

dependency model.

Load balancing protocol (LBP): LBP is a simple 1-hop protocol which works by attempt-

ing to balance the load between sensors. Sensors can be in one of three states sense/on,

sleep/off or vulnerable/undecided. Initially all sensors are vulnerable and broadcast their

battery levels along with information on which targets they cover. Based on this, a sensor

decides to switch to off state if its targets are covered by a higher energy sensor in either

on or vulnerable state. On the other hand, it remains on if it is the sole sensor covering a

target.

Thus, LBP is simplistic and attempts to share the load evenly between sensors instead

of balancing the energy for sensors covering a specific target. Hence, for the example shown

in Figure 3.1, LBP picks the sensor s1 to be active since it is the largest sensor covering the

bottom-left target T2. Similarly, it picks s2 for the bottom-right target T3. This results in a

total lifetime of 3 units when compared to the optimal of 6 units for the given example. Its

schedule is ({s1, s2}, 3).

Formulation using LD graph framework: LBP can be simulated as a special case in the

lifetime dependency graph model as follows. Given a sensor si, its local covers for its targets

T (si) are the singleton sets {s}, for all s ∈ N(si, 1). These singleton sets are then assigned

priorities in order to choose which one to use next. There are two defaults: the priority is
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highest if si is the only one covering a target (so si must switch on). On the other hand, the

priority is lowest if all of si’s targets are covered, so that si can switch off. Otherwise, the

priority is assigned based on the battery level preferring to burn those sensors with higher

battery, with preference for those covers not containing si. Thus, a key limitation of LBP is

the lack of collective negotiation captured by non-singleton cover sets in our algorithms.

DEEPS protocol: The maximum duration that a target can be covered, its life, is the

sum of the batteries of all its nearby sensors that can cover it. The main intuition behind

DEEPS is to try to minimize the energy consumption rate around those targets with smaller

lives. A sensor thus has several targets with varying lives. A target is defined as a sink if

it is the shortest-life target for at least one sensor covering that target. Otherwise, it is a

hill. To guard against leaving a target uncovered during a shuffle, each target is assigned

an in-charge sensor. For each sink, its in-charge sensor is the one with the largest battery

for which this is the shortest-life target. For a hill target, its in-charge is that neighboring

sensor whose shortest-life target has the longest life. An in-charge sensor does not switch off

unless its targets are covered by someone. Apart from this, the rules are identical as those

in LBP protocol. DEEPS relies on two-hop information to make these decisions.

For the example shown in Figure 3.1, DEEPS achieves a lifetime of 5, assuming a shuffle

round duration of 1 since initially both the sensors s1 and s2 are switched on. Its sched-

ule would be {{(s1, s2), 1}, {(s1, s6), 1}, {(s1, s7), 1}, {(s2, s3), 1}, {(s2, s4), 1}} for a total of 5

units.

Formulation using LD graph framework: DEEPS can also be represented with our lifetime

dependency graph model. The representation is just like LBP with singleton set covers from

N(si, 1). The priority function of LBP is now modified suitably to account for the concept of

in-charge sensors. Specifically, the order of priority preference is if a sensor alone can cover

a target, a sensor is in-charge of a target, and then higher battery level. The default least

priority is for a sensor if the target it is in-charge of is now covered. Again, singleton cover

sets of DEEPS, as in LBP is its key limitation.
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3.6 Simulation Results

In this section we first evaluate the performance of the one-hop and two-hop versions of

the basic algorithm as compared to 1-hop algorithm LBP [6] and 2-hop algorithm DEEPS

[7], respectively. We also consider the performance of the different variations of the basic

algorithm as outlined in Section 3.4.

For the simulation environment, a static wireless network of sensors and targets scattered

randomly in 100mx100m area is considered. We assume that the communication range of

each sensor is two times the sensing range. Different variations of the number of targets,

number of sensors and energy model are considered for the simulation. The linear energy

model is one where the power required to sense a target at distance d is a function of d. In

the quadratic energy model the power required to sense the target at distance d is a function

of d2.

One of the key things to note is that the LD graph requires all possible covers for the

local targets being considered. However, since the algorithm operates on either 1-hop or

2-hop neighbors, the number of such covers is bounded, if not small. For the purpose of

implementation we create a coverage matrix wherein each row represents a sensor and each

column a target, and an entry i, j is set to 1 if sensor i covers target j and 0 otherwise. Note

that the number of rows of this matrix is given by the size of the 1- or 2-hop neighborhood

depending on the version being considered. Iterating through every column of this matrix

and adding every covering sensor to all existing covers allows us to construct all combinations

of covers for the targets being considered. The covers obtained in this fashion form the nodes

of the LD graph at that sensor. Associated with each cover is a lifetime given by the minimum

energy sensor of that cover. This forms the node weight of the LD graph. To allow easy

construction of edges for the LD graph we implement the covers as sets and their intersection

represents the edges.

In order to compare the algorithm against LBP and DEEPS, we use the same experimen-

tal setup as employed in [6]. We conduct the simulation with 25 targets randomly deployed,
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Figure 3.4. Network Lifetime for 25 targets with linear energy model

and vary the number of sensors between 40 and 120 with an increment of 20 and each sensor

has a maximum sensing range (diameter) of 60m. The energy consumption model is linear.

The results are shown in Figure 3.4. As can be seen from the figure, both the basic 1-hop

and 2-hop algorithms outperform LBP. The 1-hop algorithm is almost as good as the 2-hop

DEEPS algorithm despite using much smaller number of messages.

Figure 3.5. Lifetime for 60 sensors with varying energy model and targets

To study variations in targets and energy models, we simulate a network of 60 sensors

with 60m sensing range for both 25 and 50 targets and linear and quadratic energy models.

The results are presented in Figure 3.5. We see a trend consistent with the previous plot
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Figure 3.6. Performance of Variants of the Basic Algorithm: Network Lifetime for 60
sensors, 25 targets, linear energy model

with LBP being outperformed by the 1-hop and 2-hop algorithms and DEEPS and the 1-hop

version showing similar lifetimes.

Finally, we simulate the different variants of the basic algorithm as outlined in Section

3.4 for a network of 60 sensors, 25 targets and a linear energy model. The results are shown

in Figure 3.6 below. For the sake of comparison, we include the basic 1-hop and 2-hop

algorithms in this plot also. We compare the 1-hop algorithm and its three variants against

LBP. The percentage improvement for each algorithm against LBP is indicated on top of

the bars. Similarly, we compare the 2-hop algorithm and Variant 4 against DEEPS. Overall

improvements are in the 11− 19% range.
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CHAPTER 4.

DISTRIBUTED ALGORITHMS BASED ON PROPERTIES OF
AN OPTIMAL SCHEDULE

In Chapter 3, we saw the definition of the LD Graph and some simple heuristics based on

the degree of nodes in this graph. In this chapter, we present additional heuristics that are

based on certain properties of how the LD Graph would be used in an optimal schedule. It is

important to realize that the prioritization phase of the basic algorithm is simply an ordering

of the local covers. By using criteria other than the degree, it is possible to prioritize these

covers differently. The heuristics we design in this chapter prioritize the choice of covers in

the LD graph by considering the above mentioned properties of an optimal schedule.

The key motivation behind our approach in this chapter has been to start with the ques-

tion of what properties an optimal schedule (henceforth called OPT ) exhibits and how can

we relate these properties to the LD graph. Digging deeper into the problem structure, our

approach in this chapter has been to start with the question of what an optimal schedule

would do with the lifetime dependency graph. We have been able to prove certain basic

properties of the OPT schedule that relate to the LD graph. Based on these properties,

we have designed algorithms which choose the covers that exhibit these OPT schedule like

properties. We present three new heuristics - Sparse-OPT based on the sparseness of con-

nectivity among covers in OPT , Bottleneck-Target based on selecting covers that optimize

the use of sensors covering local bottleneck targets, and Even-Target-Rate based on trying to

achieve an even burning rate for all targets. These heuristics are, therefore, at a higher level

and operate on top of degree-based heuristics to prioritize the local covers. Our experiments

show an improvement in lifetime of 10-15% over our basic heuristics presented in Chapter

3 and 25-30% over competing work in [6, 7]. We also implement two-hop versions of these

heuristics and show that they give around 35% improvement over the two-hop algorithm of

[7]. The material presented in this chapter was published in [24].
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4.1 Definitions

In addition to the notation introduced in Section 3.1, we introduce the following terms:

• lt(ti): The lifetime of a target ti ∈ T is given by lt(ti) =
∑

{s|ti∈T (s)} b(s).

• Bottleneck Sensor: Bottleneck sensor s of cover C is the sensor s ∈ C with minimum

battery, i.e., it is the sensor s that upper bounds lt(C).

• Bottleneck Target (tbot): The target with the smallest lifetime lt(tbot).

• Lifetime of a schedule of covers: We can view the set of currently active sensors as a

cover Ci that is used for some length of time li. After this time, when we shuffle the set of

active sensors, we get a new cover set Cj that is then used for some time lj. Note that Ci

and Cj may have sensors in common. Hence, we obtain a schedule of covers of the form,

(C1, l1), (C2, l2), ..., (Cr, lr).

The lifetime of this schedule is given by
∑r

i=1 li

• OPT : The optimal schedule of covers that achieves the maximum lifetime. Note that

this includes both the covers and their corresponding time periods.

4.2 Properties of the Optimal Sequence

In this chapter, our approach to the problem of further extending the lifetime of the

network has been to turn the argument on its head. Instead of trying to come up with

different schemes of scheduling sensors into cover sets, let us suppose we know the best

schedule. Such a schedule OPT comprises a collection of covers and the time for which each

cover is used in the optimal schedule,

OPT = {(Copt1 , l1), (Copt2 , l2), ..., (Coptr , lr)}.

The optimal sequence can be viewed as a partition of the space of covers into those covers

that are in OPT and those that are not. Now visualize all possible cover sets in the LD

graph. How would one identify from amongst all these sets, those that are candidates for

being in OPT ? Our goal is to identify certain properties of the OPT that can help make

this decision.
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Lemma 4.2.1. OPT burns all the covers.

Proof: Suppose there is a cover C ′ that is not burned by OPT, i.e., its weakest sensor has

some battery left. Burning this cover would further increase the lifetime of the network by

an amount lt(C ′). This implies that OPT is non-optimal, which gives us a contradiction.�

Lemma 4.2.2. If a cover C is not used in OPT, C has at least one neighboring cover in

the LD Graph in OPT.

Proof: If a cover C is not used in OPT, then it has at least one sensor s ∈ C that has

exhausted its battery. If this is not true, then C still has some lifetime left and this gives us

a contradiction according to Lemma 1. The fact that sensor s has been completely burned

for cover C implies that there is at least one other cover in OPT that contains this sensor

s. Otherwise, s would not be burned. This means that there is at least one cover which is a

neighbor of C in the LD graph (because they share the sensor s) and is also in OPT. �

Corollary : If a cover C is not used in OPT , C has one or more neighboring covers in OPT

such that total span of these neighbors in OPT is at least the life of C.

Lemma 4.2.3. The covers in OPT form a dominating set of the LD Graph.

Proof: A dominating set of a graph is a set of vertices such that every vertex is either in

this set or is a neighbor of a node in the dominating set.

Let us consider a cover C. There are two possibilities. Either it is in OPT , in which

case it is a dominating node, or it is not in OPT . By Lemma 2, if it is not in OPT , it has

to have at least one neighbor in OPT . Hence it is a dominated node. Hence, the covers in

OPT dominate the set of all covers in the LD graph. �
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Lemma 4.2.4. All permutations of OPT are optimal.

Proof: This lemma shows that the ordering of individual covers in the OPT sequence is

irrelevant. Any permutation OPT ′ of OPT can be obtained by repeatedly moving (COPTi
, li)

to its position j in OPT ′ for all eligible i. We prove that each such move preserves optimality.

Moving COPTi
to position j changes its relative ordering with its neighboring covers in the

LD graph which lie between position i and j. Let us call these neighbors N ′(COPTi
). Other

neighbors of COPTi
do not see any change, nor do other covers which are not neighbors. For

each neighboring cover COPTk
∈ N ′(COPTi

), w(COPTi
∩ COPTk

) ≥ li + lk, as each edge upper

bounds the cumulative lifetime. Therefore, if i > j burning COPTi
before COPTk

will leave

w(COPTi
∩ COPTk

)− li ≥ lk of battery in COPTi
∩ COPTk

. Therefore, COPTk
can be burnt for

a duration of lk, for each COPTk
∈ N ′(COPTi

).

On the other hand, if i < j, each COPTk
∈ N ′(COPTi

) will be burnt for lk time, leaving

w(COPTk
∩ COPTi

) − lk ≥ li of battery in COPTk
∩ COPTi

. Thus, COPTi
can be burnt for

duration of li at position j. �

Corollary : If C occurs more than once in OPT , all its occurrences can be brought together,

thereby burning C all at once for the cumulative duration.

Lemma 4.2.5. Due to OPT, all sensors around at least one target are completely burnt.

Proof: This relates to Lemma 1, because if there is no such bottleneck target, then it is still

possible to cover all targets, implying that a cover exists, and hence OPT is not optimal. �

4.3 Optimal Schedule based Algorithms

Recall from our discussion on the Lifetime Dependency Graph model in Section 3.2 that

we used the degree d(C), sum of the edge weights, of a cover C in order to determine

its priority. The defining of a priority function is a key step in our algorithms because it

determines the order in which covers are used in the Negotiation phase.
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The definition of the degree as the key prioritization criteria is limited since it only

considers a local property of the LD graph. As we saw in the previous section, there are

properties which show how an OPT schedule would choose covers in the LD graph. Our

goal in this section is to design heuristics that utilize these properties in the prioritization

phase of the algorithm described in Section 3.3. We introduce three heuristics based on the

properties of the OPT schedule. Each of these heuristics define a different way to prioritize

the local covers. Note that if all remaining covers are tied on the new priority functions, we

revert to using the degree to break ties. Hence, these heuristics can be viewed as defining a

higher level priority function, that acts on top of the degree d(C) function.

Heuristic 1: Sparse-OPT

This heuristic is based on Lemma 2 and works on the idea that the covers in OPT are

sparsely connected. Suppose we have a subsequence of OPT available and we were to pick

a cover to add to this sequence. Clearly any cover we add to the OPT sequence should not

be a neighbor of a cover that is already in OPT . By Lemma 2, we know that if a cover C is

in OPT for time l, then its neighbors in the LD graph can only be in OPT if their shared

sensor s has a battery b(s) > l. This implies that covers in OPT are likely to be sparsely

connected. Hence, for any two nodes (covers) in OPT, their degree in the induced subgraph

of the LD graph should be low.

For a cover C, we define its degree to other covers already selected (in OPT ) as:

dOPT (C) = Σe incident to C and to C′∈OPT w(e)

This leads us to a simple heuristic: When choosing a cover Ci, pick the cover with the

lowest degree to nodes already chosen.

Implementation: When implementing this heuristic, the exchange of messages during

the setup phase remains unchanged from before. As explained in Section 3.3, recall that

in the setup phase, a sensor s exchanges information on its battery b(s) and the targets it

covers T (s) with its neighbors. This information is then used to compute all local covers for

targets in T (s), and construct an LD graph for these.
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The next step in the algorithm would be to prioritize the covers in the local LD graph.

Instead of prioritizing a cover C by its degree d(C), the heuristic we defined gives us a higher

level of prioritization. Initially, there are no covers that have been selected for use so the

heuristic starts off as before. A sensor orders its local covers by d(C) (battery and id’s can

be used to break ties), and then enters a negotiation phase with its neighbors in order to

decide which cover to use. This would result in some cover C ′ being selected for use.

In the subsequent round the sensor recomputes the priority function for its covers. Now,

in computing the priority of a cover C, we can look at its degree to the previously used cover

C ′, given by dOPT (C), and prioritize the covers in the order of lowest degree first. Note that

if dOPT is the same for several covers, we can break ties by using d(C) as before. As the set

of previously used covers increases over time, we compute the priorities at the beginning of

each round by looking at the dOPT of any cover to this set and assigning a higher priority to

the covers with the lowest degree.

Heuristic 2: Bottleneck-Target

This heuristic is based on the property that covers in OPT should optimize the local

bottleneck target and makes use of the ideas presented in Lemma 5.

Let us consider the set of all targets T . Some of these targets are more important than

others because they represent bottlenecks for the lifetime of the network. Consider a target

ti. Then, the total amount of time this target can be monitored by any schedule is given by:

lt(ti) =
∑

{s | ti∈T (s)} b(s)

Clearly there is one such target with the smallest lt(ti) value, that is a bottleneck for

the entire network. Since the network as a whole cannot achieve a lifetime better than this

bottleneck, it follows that any cover should not use multiple sensors from the set of sensors

that cover this bottleneck. However, without a global picture, it is not possible for any sensor

to determine if one of its local targets is this global bottleneck.



38

However, every sensor is aware of which of its local targets is a local bottleneck. The key

thing to realize is the fact that if every sensor optimizes its local bottleneck target, then one

of these local optimizations is also optimizing the global bottleneck target.

Let tbot be this local bottleneck target. Let Cbot be the set of sensors that can cover this

local bottleneck target.That is,

Cbot = {s | tbot ∈ T (s)}

Ideally, we would like to use a cover that has only one sensor in Cbot as a part of this

cover. However this may not always be possible. Hence, while prioritizing the local covers,

we can pick a cover that minimizes the cardinality of its intersection with Cbot.

Hence, the cover selected should be the cover C that minimizes |C ∩ Cbot|.

Implementation: The implementation is similar to Heuristic 1. Again, the setup and

LD graph construction phase remain unchanged. Every sensor s now computes its local

bottleneck target tbot ∈ T (s) and the set of sensors that covers this target Cbot. Note that

this can be done since at the end of the setup phase, every sensor knows who its neighbors

are, which targets they cover, and how much battery they have.

When calculating the priority of each cover C in the LD graph, the priority function

defined by this heuristic calculates the value of |C ∩ Cbot| for each cover, since this gives us

the number of sensors in Cbot that are a part of the cover C. The heuristic then prioritizes

covers in descending order of this cardinality. Again, if this value is the same for multiple

covers, we break ties by using the degree d(C).

Heuristic 3: Even-Target-Rate

This heuristic is based on the idea that OPT should try and burn all targets at the same

rate. Consider a target ti ∈ T . Let lt(ti) be the sum of the battery of all sensors covering ti.

Clearly the network cannot be alive for longer than lt(tbot) where tbot is the target with the

smallest lifetime. Heuristic 2 stated above tries to maximize the time this bottleneck can

be used. However, the danger in this is that by doing so, a different target may become the
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bottleneck due to repeated selection of its covering sensors. To avoid this problem, and at

the same time optimize the bottleneck target, we want to keep an even rate of burning for

all targets. In order to arrive at a normalized burning rate for each target ti, we define the

impact of a cover C on a target ti as given by,

Impact(C, ti) =
|{ s ∈ C | ti ∈ T (s)}|

lt(ti)

The Impact should give a measure of how this cover C is reducing the lifetime of a target

ti. Since each round lasts for one time unit, the impact is measured by the number of sensors

covering ti that are in C. Hence, the definition. This gives us the heuristic:

Any cover chosen should be the best fitting cover in that it burns all targets at an even

rate.

Implementation: After setup and constructing its LD Graph as before, each sensor s

enters the prioritization phase. For every target being considered, s computes the impact

of a cover C on that target, i.e., the sensor s calculates Impact(C, ti) for all ti ∈ T (s). Let

Impactmax(C) be the highest impact of this cover C and let Impactmin(C) be the lowest

impact of C for all targets. A good cover will have a similar impact on all targets, since it

burns them at the same normalized rate. Hence, we prioritize covers in descending order of

this difference, given by Impactmax(C) − Impactmin(C). Once again, if the impact is the

same, we can break ties using d(C).

4.4 Experimental Evaluation

In this section, we first evaluate the performance of the one-hop and two-hop versions

of the three heuristics based on OPT schedule as compared to the 1-hop algorithm LBP

[6], the 2-hop algorithm DEEPS [7], and our basic Degree-Based heuristic from our previous

work in [55]. Next, we create appropriate hybrids of the three 1-hop heuristics in various

combinations, showing that all three combined together yield around 30% improvement over

1-hop LBP and 25% over the 2-hop DEEPS algorithm (Fig. 4.1 and 4.2). Even though
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theoretically our algorithms are exponential in the number of targets, practically their com-

putation time was no more than three times the LBP algorithm with same communication

complexities. We also implement the 2-hop versions of these heuristics and obtain a 35%

improvement in lifetime over DEEPS (Fig. 4.3). As compared to an upper bound on the

longest network lifetime (the lifetime of the global bottleneck target), our 1-hop algorithms

have moved the state of art to no worse than 30-40% on an average (Fig. 4.4). The 2-hop

algorithms are no worse that 25% on an average.

Figure 4.1. Lifetime with 25 Targets

In order to compare the algorithm against LBP, DEEPS, and our previous work, we

use the same experimental setup and parameters as employed in [6]. We carry out all

the simulations using C++. For the simulation environment, a static wireless network of

sensors and targets scattered randomly in 100m× 100m area is considered. We conduct the

simulation with 25 targets randomly deployed, and vary the number of sensors between 40

and 120 with an increment of 20 and each sensor with a fixed sensing range of 60m. We

assume that the communication range of each sensor is two times the sensing range [69, 66].

For these simulations, we use the linear energy model wherein the power required to sense

a target at distance d is proportional to d. We also experimented with the quadratic energy

model (power proportional to d2). The results are similar to [55] and the same trends as the
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linear model apply. Due to space constraints, we only show a snapshot of these results in

Fig. 4.4.

26%

26%

Figure 4.2. Comparing LBP [3] against the 1-hop OPT-based heuristics

The results are shown in Fig. 4.1. As can be seen from the figure, among the three heuris-

tics, the Bottleneck-Target heuristic performs the best giving about 10-15% improvement in

lifetime over our previous 1-hop Degree-Based heuristic and about 25-30% over LBP and

DEEPS. Sparse-OPT and Even-Target-Rate also improve over the Degree-Based heuristic.

We also ran simulations with a combination of the heuristics. (2, 1) denotes the com-

bination of heuristic 2, Bottleneck-Target, followed by heuristic 1, Sparse-OPT, and so on.

For these experiments, the priority function was modified to implement the priority function

of both heuristics in the same algorithm. For example, in (2, 1), we first optimize the local

bottleneck target (based on heuristic 2) and in case of ties, we break them by checking the

degree to previously selected covers (based on heuristic 1). Other implementations follow

similarly. The combination of heuristics give a better lifetime than the individual heuristics;

the best hybrid was (2,3,1) plotted in Fig. 4.1.

In Fig. 4.2, we highlight the performance of the three heuristics as compared to LBP. The

simulation is run for 40, 80 and 120 sensors, with 25 targets and a linear energy model. As

can be seen, a similar trend in improvements is observed. Overall lifetime improvements are
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36%

35%

Figure 4.3. Comparing DEEPS [7] against the 2-hop OPT-based heuristics

in the range of 25-30% over LBP as the baseline. The heuristics are presented in ascending

order of performance in the figure.

Since DEEPS is a 2-hop algorithm, we also compared 2-hop versions of our proposed

heuristics, where the target set T (s) of each sensor is expanded to include ∪s′∈N(s,1)T (s′)

and the neighbor set is expanded to all 2-hop neighbors, i.e., N(s, 2). The results are shown

in Fig. 4.3. As can be seen, the 2-hop versions give a further gain in lifetime over DEEPS,

with overall improvement of 35% for the hybrid of the three heuristics.

10%

23%

Figure 4.4. Comparing 1-hop and 2-hop Degree-Based [55] heuristics against OPT-based
heuristics

Finally, we highlight the comparison of the proposed heuristics against our previous work

[55] in Fig. 4.4. We show results here for the median value of n = 80 sensors. The two
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series compare the 1-hop version of the Degree-Based heuristic against the 1-hop version

of the OPT heuristics and then repeat these comparisons for the 2-hop versions of both.

Overall, we achieve gains of 10-15% for the 1-hop heuristics and between 20-25% for the

2-hop heuristics. We also show (i) how far these heuristics are compared to the upper bound

on network lifetime, and (2) that both linear and quadratic energy models follow similar

trends.

In this chapter, we address the problem of scheduling sensors to extend the lifetime of

a Wireless Sensor Network. We examine the properties that an optimal schedule would

exhibit and use these to design three new heuristics that work on the lifetime dependency

graph model. Simulations show an improvement of 25-30% over the algorithms in [6, 7] and

10-15% over our previous work in [55] for the 1-hop algorithms. Two-hop versions show

additional improvements over their counterparts. These heuristics are designed to work on

higher level properties of the dependency graph. The net effect is a significant improvement

in the state of art, with our algorithms performing no worse than 30-40% compared to the

optimal network lifetime on an average.
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CHAPTER 5.

TAMING THE EXPONENTIAL STATE SPACE OF THE
MAXIMUM LIFETIME SENSOR COVER PROBLEM

In the previous two chapters, we have introduced several distributed algorithms based

on the concept of a Lifetime Dependency (LD) Graph. Our motivation was to study un-

derlying properties of the problem and develop distributed heuristics that make use of these

properties. If we consider the LD graph, it is quickly obvious that even creating this graph

will take exponential time since there are 2n cover sets to consider where, n is the number

of sensors. However, the target coverage problem has a useful property - if the local targets

for every sensor are covered, then globally, all targets are also covered. In [55], we make use

of this property to look at the LD graph locally (fixed 1-2 hop neighbors), and are able to

construct all the local covers for the local targets and then model their dependencies. Based

on these dependencies, a sensor can then prioritize its covers and negotiate these with its

neighbors. Simple heuristics based on properties of this graph were presented in [55] and

showed a 10-15% improvement over comparable algorithms in the literature. [24] built on

this work by examining how an optimal sequence would pick covers in the LD graph and

designing heuristics that behave in a similar fashion. Though the proposed heuristics are

efficient in practice, the running time is a function of the number of neighbors and the num-

ber of local targets. Both of these are relatively small for most graphs but theoretically are

exponential in the number of targets and sensors.

A key issue that remains unresolved is the question of how to deal with this exponential

space of cover sets. In this paper we present a reduction of this exponential space to a

linear one based on grouping cover sets into equivalence classes. We use [Ci] to denote the

equivalence class of a cover Ci. The partition defined by the equivalence relation on the set

of all sensor covers Given a set C and an equivalence relation <, the equivalence class of an

element Ci ∈ C is the subset of all elements in C which are equivalent to Ci. The notation



45

used to represent the equivalence class of Ci is [Ci]. In the context of the problem being

studied, C is the set of all sensor covers and for any single cover Ci, [Ci] represents all other

covers which are equivalent to Ci as given by the definition of some equivalence relation <.

Our approach stems from the understanding that from the possible exponential number of

sensor covers, several covers are very similar, being only minor variations of each other. In

Section 5.1, we present the definition of the relation <, based on a grouping that considers

cover sets equivalent if their lifetime is bounded by the same sensor. We then show the

use of this relation to collapse the exponential LD Graph into an Equivalence Class (EC)

Graph with linear number of nodes. This theoretical insight allows us to design a sampling

scheme that selects a subset of all local covers based on their equivalence class properties

and presents this as an input to our simple LD graph degree-based heuristic. Simulation

results show that class based sampling cuts the running time of these heuristics by nearly

half, while only resulting in a less than 10% loss in quality.

5.1 Dealing with the Exponential Space

In this section, we present our approach of dealing with the exponential solution space of

possible cover sets. The next section utilizes these ideas to develop heuristics for maximizing

the lifetime of the network. Even though the total number of cover sets for the network may

be exponential in the number of sensors, for any given cover set, there are several other sets

that are very similar to this set. We begin by attempting to define this notion of similarity

by expressing it as an equivalence relation.

Definition 1: Let < be an equivalence relation defined on the set of all sensor covers such

that Ci < Cj if and only if Ci and Cj share the same bottleneck sensor sbot.

Theorem: < is an equivalence relation

Proof: < is reflexive, since Ci < Ci. < is symmetric, since if Ci < Cj then, Cj < Ci since

both covers Ci and Cj share the same bottleneck sensor. Finally, if Ci < Cj and Cj < Ck,

then Ci < Ck and < is transitive since if Ci shares the same bottleneck sensor with Cj and
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Cj shares the same bottleneck sensor with Ck then, clearly both Ci and Ck have the same

bottleneck sensor in common. Therefore, < is and equivalence relation. �

Every equivalence relation defined on a set, specifies how to partition the set into subsets

such that every element of the larger set is in exactly one of the subsets. Elements that are

related to each other are by definition in the same partition. Each such partition is called an

equivalence class. Hence, the relation < partitions the set of all possible sensor covers into a

number of disjoint equivalence classes.

s1

s7

 T1  T2

s6 

s2

s4

s3

1

4

10
10

10

3

Figure 5.1. Example Sensor Network

Notation: Henceforth, we represent the equivalence class of covers sharing a bottleneck

sensor si by [si]. Note that this is a slight abuse of notation since si is not a member of this

class, but is instead the property that is common to all members of this class. Hence, [si]

can be read as the equivalence class for all covers having sensor si as their bottleneck sensor.

We now define what we would call the Equivalence Class (EC) Graph. Each node of this

graph represents an equivalence class. Just as the LD graph models the dependency between

sensor covers, the EC Graph models the dependency between classes of covers.

Definition 2: Equivalence Class Graph (EC). The Equivalence Class graph EC = (V ′, E ′)

where, V ′ is the set of all possible equivalence classes defined by < and two classes [si] and

[sj] are joined by an edge for every cover in each class that share some sensor in common.

Hence, the graph EC is a multi-edge graph.

The cardinality of the vertex set of the Equivalence Class Graph is at most n. This result

follows from the observation that for any network of n sensors, there can be at most one
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equivalence class corresponding to each sensor, since every cover can have only one of the n

sensors as its bottleneck (in case two or more sensors all have the same battery and are the

bottleneck, sensor id’s can be used to break ties).

To better understand these definitions, let us consider an example. Consider the sensor

network shown in Figure 5.1. The network comprises of seven sensors, s1, ..., s7 and two

targets, T1, T2. Observe that T2 is the bottleneck target for the network since it is the least

covered target (8 units of total coverage compared to 33 for T1). Also note that only one

sensor, s1 can cover both targets.

For the given network, the set of all possible minimal sensor covers, S is,

S = {{s2, s6}, {s2, s7}, {s3, s6}, {s3, s7}, {s4, s6}, {s4, s7}, {s1}}

For each individual cover in this set, the bottleneck sensor is the sensor shown in bold

face.

Figure 5.2 shows the Lifetime Dependency graph for these covers. As defined, an edge

exists between any two covers that share at least one sensor in common and the weight of

this edge is given by the lifetime of the common sensor having the smallest battery (the

bottleneck). For example, an edge of weight 4 exists between C1 and C2 because they share

the sensor s2 having a battery of 4.

C1

{S2,S7}
C3

{S4,S7}

C2

{S3,S7}

C4

{S2,S6}

C5

{S3,S6}
C6

{S4,S6}

C7

{S1}

4

1

4

1

10 10

1

4

10

Figure 5.2. LD Graph for the example network
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To obtain the EC Graph from this LD Graph, we add a node to represent the equivalence

class for each sensor that is a bottleneck sensor for any cover. For the above example, given

all sensor covers in the set S, there are three sensors s1, s6, s7 that are each the bottleneck for

one or more covers in S. Hence, the EC Graph is a three node graph. Figure 5.3 shows the

complete EC Graph for the covers in S. There is a node corresponding to the equivalence

class for each of the three sensors s1, s6, s7 and for each cover in the class we retain edges to

the class corresponding to the bottleneck sensor of the cover on which the edge terminated

in the LD graph. Hence, we have three edges between the nodes s6 and s7.

[s7] [s1][s6]
10

10

10

Figure 5.3. EC Graph for the example network

It is key to realize that the EC graph is essentially an encapsulation of the LD Graph

that can have at most n nodes. This view is presented in Figure 5.4, where we show the

LD Graph that is embedded into the EC Graph. Each rectangular box shows the nodes in

the LD graph that are in the same equivalence class. This figure also illustrates our next

theorem.

Theorem: For sensor covers in the same equivalence class, the induced subgraph on the

LD Graph is a clique

Proof: This theorem states that for the nodes in the LD graph that belong to the same

class, the induced subgraph is a clique. Since by definition, all sensor covers in a class [s]

share the sensor s as their bottleneck sensor, the induced subgraph will be a complete graph

between these nodes. �

Also, a subtle distinction has been made between inter-class edges and intra-class edges

in going from the LD graph to the EC graph.
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Figure 5.4. EC Graph for the example network along with the LD Graph embedded in it

5.2 Sampling Based on the Equivalence Class Graph

The previous section defined the concepts behind reducing the exponential space of covers

in the LD Graph to the linear space of the EC Graph. In this section, we build on these

concepts to discuss techniques for generating a limited number of covers for the LD Graph.

Specifically, our goal is to improve the timing performance of the distributed algorithms we

presented in [55, 24]. As presented, the EC Graph is not very useful since it still requires the

exponential LD graph to be populated, before it can be constructed. However, by realizing

that the exponential space of cover sets can be expressed in this linear space of equivalence

classes, we can generate only a subset of the set of all covers.

Recall from Chapter 3 that even though the number of global sensor covers is exponential

in the number of sensors, our heuristics presented in [55, 24] worked by constructing local

covers. After exchanging one or two hop coverage information with neighboring sensors, a

sensor can exhaustively construct all possible local covers. A local cover here is a sensor

cover that covers all the local targets. The number of local covers is also exponential but is

determined by the maximum degree of the graph and the number of local targets, typically

much smaller values than the number of all sensors or targets. The heuristics then construct
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the LD graph over these local covers. The choice of which cover to use is determined by

looking at properties of the LD graph such as the degree of each cover in the LD graph.

By making use of the idea of related covers in the same equivalence class, our goal is

to use our existing heuristics from [55, 24] but to modify them to run over a subset of the

local covers as opposed to all local covers. This should give considerable speedup and if the

subset is selected carefully, it may only result in a slight reduction of the overall lifetime. We

present such a local cover sampling scheme in Section 5.2.1 and then present the modified

basic algorithm of [55, 24] to operate on this sample in Section 3.3. Finally, we evaluate the

effectiveness of sampling in Section 5.3.

5.2.1 Local Bottleneck Target based generation of local cover sets

Understanding the underlying equivalence class structure, we now present one possible

way of generating a subset of the local cover sets. Our approach is centered around the

bottleneck target. For any target ti, the total amount of time this target can be monitored

by any schedule is given by:

lt(ti) =
∑

{s | ti∈T (s)} b(s)

Clearly there is one such target with the smallest lt(ti) value, and is hence a bottleneck

for the entire network [60]. Without global information it is not possible for any sensor to

determine if the global bottleneck is a target in its vicinity. However, for any sensor s, there

is a least covered target in T (s) that is the local bottleneck. A key thing to realize is the

fact that the global bottleneck target is also the local bottleneck target for the sensors in

its neighborhood. Hence, if every sensor optimizes for its local bottleneck target, then one

of these local optimizations is also optimizing the global bottleneck target. We use tbot to

denote this local bottleneck target. Let Cbot be the set of sensors that can cover this local

bottleneck target.That is,

Cbot = {s | tbot ∈ T (s)}
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Implementation: This understanding of bottleneck targets, along with our definition of

equivalence classes, now gives us a simple means to generate local covers. Since no coverage

schedule can do any better than the total amount of time that the global bottleneck can

be covered, instead of trying to generate all local covers, what we really need are covers in

the equivalence classes corresponding to each sensor si ∈ Cbot, such that each class can be

completely exhausted. Also, to only select covers that conserve the battery of the sensors

in Cbot, we want to ensure that the covers we generate are disjoint in Cbot. In terms of

equivalence classes, for any two classes [si] and [sj] such that si, sj ∈ Cbot, we want to

generate cover sets that are in these classes but do not include both si and sj.

To generate such cover sets, we can start by picking only one sensor s′bot in Cbot. This

ensures that the local bottleneck target is covered. For each target ti in the one/two-hop

neighborhood being considered, we can then randomly pick a sensor s, giving preference to

any s /∈ Cbot. Note that this does not necessarily create a sensor cover in the class [s′bot],

since any one of our randomly picked sensors could be the bottleneck for the cover generated.

However, replacing that sensor with another randomly picked sensor that covers the same

target ensures that the we finish by using a cover in [s′bot]. Such a selection essentially

ensures that we burn the entire battery of this sensor s′bot in Cbot through different covers,

while trying to avoid using other sensors in Cbot. This process is then repeated for every

sensor in Cbot. Hence, instead of generating all local covers, we only generate a small sample

(constant number) of these corresponding to the equivalence class for each sensor covering the

bottleneck target and some related randomly picked covers. We already showed that there

can be at most n equivalence classes for the network. Thus, the sampled graph generated has

O(n) nodes. If we consider the maximum number of sensors covering any target as a constant

for the network, sampling only takes cumulative time of O(nτ), where τ = maxs∈S|T (s)|,

since we do this for n sensors, each of which has a maximum of τ targets to cover, which

are in turn covered by a constant number of sensors (as per our assumption). Even if this

assumption is removed, in the worst case, all n sensors could be covering the same target
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making the time complexity O(n2τ). Next, we run our basic heuristic from [55] on this

sampled LD graph.

5.3 Performance Evaluation

In this section, we evaluate the performance of the proposed sampling scheme and eval-

uate it against our degree based heuristics of [55]. By not constructing all local covers and

instead constructing a few covers for key equivalence classes, we should achieve considerable

speedup. But the effectiveness of sampling can only be evaluated by analyzing its tradeoff

between faster running time for possible reduced performance. The objective of our simu-

lations was to study this tradeoff. For completeness, we create both one-hop and two-hop

versions of our sampling heuristic and also compare its performance to two other algorithms

in the literature, the 1-hop algorithm LBP [6] and the 2-hop algorithm DEEPS [7]. Details

of both these algorithms are given in Section 2.

In order to compare the equivalence class based sampling against our previous degree

based heuristics, LBP, and DEEPS, we use the same experimental setup and parameters as

employed in [6]. We carry out all the simulations using C++. For the simulation environ-

ment, a static wireless network of sensors and targets scattered randomly in 100m × 100m

area is considered. We conduct the simulation with 25 targets randomly deployed, and vary

the number of sensors between 40 and 120 with an increment of 20 and each sensor with a

fixed sensing range of 60m. The communication range of each sensor assumed to be two times

the sensing range [69, 66]. For these simulations, we use the linear energy model wherein the

power required to sense a target at distance d is proportional to d. We also experimented

with the quadratic energy model (power proportional to d2). The results showed similar

trends to those obtained for the linear model.

Figure 5.5 shows the Network Lifetime for the different algorithms. As can be seen from

the figure, the sampling heuristics is only between 7-9% worse than the degree based heuristic.

Sampling also outperforms the 1-hop LBP algorithm by about 10%. It is interesting to
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Figure 5.5. Comparison of Network Lifetime with 25 Targets

observe that for smaller network sizes, sampling is actually much closer to the degree-based

heuristics in terms of performance.

Figure 5.6. Comparison of Running Time with 25 Targets

Now that we have seen that sampling works well when compared to the degree based

heuristic, the question that remains to be answered is how much faster is the sampling

algorithm? Figure 5.6 compares head-to-head the running time for the degree based heuristic

(potentially exponential in m) and the linear time sampling algorithm. As can be seen from

the figure the running time for the sampling algorithm is about half of the running time for

the degree-based heuristic.



54

Table 5.1. Comparison of Network Lifetime for 1-hop algorithms

Algorithm n=40 n=80 n=120

LBP [6] 12.4 29.1 40.1

Degree-Based [55] 13.8 33.4 45.6

Sampling-Based 13.7 30.3 42.1

Randomized-Sampling 10.1 17.6 30.1

Table 5.2. Comparison of Network Lifetime of 2-hop algorithms

Algorithm n=40 n=80 n=120

DEEPS [7] 14.1 32.7 46.1

Degree-Based (2-hop) [55] 15.2 36.2 49.6

Sampling-Based (2-hop) 14.4 33.4 47.5

Finally, we individually study the 1-hop (Table 5.1) and 2-hop (Table 5.2) sampling

heuristics with comparable algorithms. For the 1-hop algorithms, we also include a randomized-

sampling algorithm that makes completely random picks for each target, without considering

properties of the equivalence classes. The intention is to ensure that the performance of our

sampling-heuristic can be attributed to the selection algorithm. For the 2-hop versions of

our proposed sampling heuristic, the target set T (s) of each sensor is expanded to include

∪s′∈N(s,1)T (s′) and the neighbor set is expanded to all 2-hop neighbors, i.e., N(s, 2). Cov-

ers are now constructed over this set using the same process as before. As can be seen

from the table, both the 1-hop and 2-hop version are under 10% worse than the comparable

degree-based heuristics. Also, the 2-hop sampling slightly outperforms the DEEPS by a 5%

improvement in network lifetime.

In this chapter, we introduced some key ideas on dealing with the exponential space of

sensor covers for the maximum lifetime sensor scheduling problem. Our approach was based

on defining a relation that partitions the set of all sensor covers into a linear number of

disjoint partitions. We use this underlying theory to sample this exponential space efficiently

and show that heuristics that use this sample achieve significant speedup with only slight

reduction in quality. Unlike existing work based on simple greedy algorithms on the sensor
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network graph, our algorithms are theoretically grounded and make use of the dependency

information in the LD graph as well as the reductions of the EC graph, to achieve significant

improvements in network lifetime.
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CHAPTER 6.

A DISTRIBUTED ALGORITHMIC FRAMEWORK FOR
COVERAGE PROBLEMS IN WIRELESS SENSOR

NETWORKS

In this chapter, we generalize the concepts introduced in Chapter 3. We realize that

the scheme of creating local solutions and modeling their dependencies applies to various

other problems besides target coverage. In general, for certain graph and network problems

where solving the problem locally implies that a globally feasible solution can be reached,

our framework can be used (See Section 6.1). In this chapter we use the solution in [55] to

develop a framework and show its application to the area coverage and k -coverage problems

besides showing how the target coverage solution fits into this generalized framework. We also

illustrate the use of the framework in a more general context by applying it to the problem

of finding an independent set in a distributed environment. The key points of the framework

include construction of local solutions, modeling the dependency between the local solutions

using a dependency graph, prioritizing the interdependent local solutions using a priority

function that can utilize the dependency graph and negotiating with neighbors to arrive at

a mutually satisfactory local solution.

Our overall framework is a two phase distributed meta-algorithm. The first phase is

the setup phase for each node to construct prioritized local solutions. The second phase

is the rounds of negotiation phase during which each node chooses its best local solution

compatible with its neighbors. Employing the framework entails the following:

• verifying the applicability of the framework,

• modeling the state space of local solutions and their interdependencies using a depen-

dency graph structure,
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• heuristically modeling the priority of local solutions based on the properties of the

dependency graph structure, and

• determining the logistics of negotiating with neighbors to settle on mutually-compatible

and high-priority local solutions.

6.1 Our General Framework

Our framework applies to a class of graph and network problems wherein the locally

compatible solutions can be melded in a distributed fashion to yield a globally feasible

solution. For most sensor coverage problems, local covers when combined together yield

global covers, since if all local targets are covered, this implies that globally, all targets are

covered.

For such class of problems, even if it is intractable to find globally-optimal solutions, it

may be tractable to find locally-optimal solutions, since the problem size is much smaller. For

example, all possible covers of local targets of a sensor can be efficiently found for bounded

sensing range. These local solutions often are interdependent, i.e., using one may impact a

subsequent use of others. For example, in sensor coverage problems, using one cover set may

reduce the lifetime of those covers which share sensors with the first. This is problematic if

a series of solutions are needed.

In this section we provide an overview of the principles of the generic framework. The

details as applied to the coverage problem are given in Section 6.2. Hence, in the discussion

that follows, we describe the four steps in the order in which they are used.

1. Applicability of the framework: The problem being solved must have the property

that compatible local solutions of neighbors when combined give a globally feasible

solution. Compatibility may be checked by communicating with the neighbors. For

example, for the target coverage problem, if for each sensor, all local targets have been

covered, this implies that all targets have been covered globally also. Hence, solving the
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problem locally for every node gives a globally valid solution. This step also establishes

criteria for checking mutual compatibility of local solutions.

For an example of a problem that cannot be solved using this framework, consider

constructing a spanning tree. Here, the local solution would be a spanning tree con-

necting a sensor to its neighborhood. However, these local trees when combined, may

have cycles and do not imply that a global tree is formed. Of course, melding these

subtree edges in a reduction-tree fashion rejecting those edges which cause a cycle will

yield a global spanning tree [20]. However, that needs much more communication than

what can be efficiently done distributively. Hence this property of all local solutions

yield a globally feasible solution is imperative for our framework.

2. Modeling the local solutions and their interdependencies: This step starts

with modeling the local solutions for the given problem. In some cases it may possible

to compute all solutions, whereas for others we would need a representative sample to

model the state space. For many problems, these local solutions are not independent

of each other. For example, in the target coverage problem, for a given sensor, there

can be a number of different subsets of neighbors that cover the local targets being

considered. Since these sets are not disjoint, using one set drains the lifetime of an-

other set. To account for this, the framework envisions a graph model to capture these

dependencies among the local solutions. Note the specifics of this graph would depend

on the problem being considered. We call this a Dependency Graph. This is a key

contribution of our framework. Instead of a simple greedy heuristic to choose the best

solution, we consider a solution with relation to its impact on other possible solutions

and use this as a criterion to assess a solutions quality.
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3. Prioritize the local solutions: Each node needs to decide which of the possible

local solutions to use. Based on the dependency structure of these local solutions and

other problem specific metrics, a priority function can be defined that measures the

quality of a local solution. Including the dependency information of the graph into

this heuristic priority function gives us a way to account for the problem structure.

4. Negotiate with neighbors for mutually satisfying solutions: This step involves

deciding the details of communication related logistics for the 2-phase execution con-

sisting of setup and negotiation phases. The setup phase is usually a round of infor-

mation exchange with 1-hop or 2-hop neighbors followed by construction of the local

solutions and the dependency graphs structure, and calculation of the priorities of the

local solutions. In the negotiation phase, a node communicates with its neighbors and

based on both its preference and those of its neighbors, picks a solution to use. Again,

the nature of this step would be problem dependent and we explore this with respect

to the target coverage problem in the next section. Through its negotiation phase,

a node attempts to locally satisfy the twin goals of feasibility and local optimality.

Also note that the problem may require several rounds of negotiation to arrive at a

mutually acceptable solution. However, for effectiveness and scalability of the resulting

distributed algorithm, the number of communication rounds with neighbors needs to

be upper-bounded by a small constant.

An Example Maximum Independent Sets: To illustrate the use of this framework in a

context outside that of the coverage problems for wireless sensor networks, we consider the

problem of finding a valid independent set of vertices for a graph in a distributed manner.

Given a graph G = (V,E), an independent set of vertices V ′ is a subset V ′ ⊆ V such that

no two vertices in V ′ have an edge e ∈ E that connects them. Let us now briefly develop the
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Figure 6.1. Example Graph for the Independent Set problem

proposed framework for this problem and look at an example. We will go into much greater

depth in developing the framework for various coverage problems in the following section.

1. Applicability: This problem of finding an independent set can be solved within our

framework since every node and its neighbors can decide their local independent sets which

collectively yields the global independent set. There will never be any two nodes x, y ∈ V

that will both decide to be in the independent set if they have an edge (x, y) ∈ E, since they

know of the existence of this edge.

2. Modeling the local solutions and their interdependencies: For the independent set

problem, we define a local solution for a node to be given by a valid local independent set

of all nodes in its closed one hop neighbor set. Hence, a node needs to construct all possi-

ble local independent sets to obtain all local solutions possible. For example, consider the

graph shown in Figure 6.1. For the node B, the closed one hop neighbor set is given by

{A,B,C,D}. All local solutions for this set are given by {A,C,D} and {B}. For the node

B, these two combinations are the only two possible local maximal independent sets. By

maximal we mean that adding another vertex to the set would destroy the independence

property. Similarly, for the node A, the set of local solutions is given by {A} and {B} (i.e.,

either A or B can be in the independent set) and so on.
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3. Prioritize the local solutions: The objective of the prioritization phase is to have some

criteria on the basis of which a node decides which local solution to use. For the independent

set problem, one possible way to prioritize the local solutions may be given by ordering them

in descending order of maximum cardinality. Hence, for the node B, {A,C,D} would be

the first choice local solution and {B} would be the second. This is because the first would

allow for a larger independent set. If cardinalities are equal, we can break ties by node id’s.

4. Negotiate with neighbors for mutually satisfying solutions: A node must determine

which of its solutions to use. Each solution is essentially a decision on which nodes in the one

hop neighbor set are a part of the independent set. Since such a choice affects the solutions of

other nodes in the neighborhood, a negotiation phase is required. For example, in the Figure

6.1, if the nodes A,C, and D agree to the first choice of node B then this automatically

renders the choice of {A} invalid from the local solutions of node A, thereby making {B} its

local solution of choice. The nodes selected in the independent set are colored gray in the

figure.

Let us now briefly sketch the implementation details of these phases. Initially every node

broadcasts a message containing its id to discover who its neighbors are. Upon receiving

this information, each node can then independently compute all local solutions and prioritize

them. The negotiation phase would entail exchanging a message with its neighbors that

describes the independent set it prefers to use. A neighbor can either accept or reject this

proposed local partition. If a valid independent set exists, it has to be in the set of all local

solutions and hence it will be satisfied. Else, none of the nodes will join the independent

set. If the neighbors accept a node’s choice, they have made a decision which now narrows

their own choices. For the example in Figure 6.1, when the node B has negotiated its choice

of {A,C,D} with its neighbors and they have accepted this, they join the independent set.

Node C can likewise negotiate with its neighbor E to select one of E’s solutions in which E



62

is not in the independent set. In case E has chose itself in the independent set, C can drop

itself without impacting anyone else.

6.2 Developing the Framework for Coverage Problems

In this section we define the steps of our framework presented in Section 6.1 as applied

to different coverage problems. The specifics for each of the three coverage problems - area,

target and k -coverage are defined in the next section. As opposed to the independent set

example in the previous section, we will look at the coverage problems in much greater detail

in this section.

6.2.1 The Framework for Coverage Problems

6.2.1.1 Applicability of framework

For coverage problems, if every sensor ensures that its local coverage objective (local

targets/area) is satisfied then this implies that the global coverage objective has also been

met. Also for the coverage problem, local solutions are always compatible with each other

since a sensors local solution does not invalidate that of another sensor’s solution.

6.2.1.2 Modeling the local solutions and their dependencies - The Lifetime De-

pendency (LD) Graph

We approach this problem by focusing on the local neighborhood of a sensor. Each sensor

constructs all possible local covers that satisfy its local coverage objective. In the local 1-hop

neighborhood, the number of local covers is usually small (where a cover could be for area or

targets). This allows individual sensors to distributedly construct local minimal cover sets.

A sensor can construct its local covers by considering one-hop neighbors it can communicate

to while trying to meet its coverage objectives. For a better decision, it can also consider all

neighbors up to two hops and their targets at a slightly increased communication cost.

When two cover sets have some sensors in common, they have some dependency on each

other because using one cover set drains the battery of the sensors it shares with the other
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cover set. This is important because when we pick cover sets to use in a schedule, we should

take into account this influence that they have on future cover sets in the schedule. To

account for this we defined the lifetime dependency graph in Chapter 3.

6.2.1.3 Prioritize the local solutions

Initially, each sensor s communicates with its neighbors and exchanges information on

available battery b(s) and the region (area or targets) it can cover. We will discuss the

specific message exchanges in Section 6.3. Based on this information, sensor s can compute

all the local covers for its local objective. Each sensor then constructs a local LD graph

G′ = (V ′, E ′) for these covers, and calculates the degree d(C) of each cover C ∈ V ′ in G′.

A priority function can be defined to prioritize the local covers. We base the priority of

cover C on its degree d(C) in the lifetime dependency (LD) graph. A lower degree is better

since this corresponds to a smaller impact on other covers. If the degree is the same for two

or more covers, ties are broken by using (i) the cover with a longer lifetime, (ii) the cover

with fewer sensors remaining to be turned on (See the next step), (iii) the cover with the

smaller sensor id.

6.2.1.4 Negotiate solutions

The algorithm for a sensor to negotiate its solutions with that of its neighbors operates

in rounds. Each round consists of two phases. Phase 1 is the setup phase as described above.

In Phase 2, a sensor arrives at an on-off decision based on the messages it receives. The

operation in rounds is very similar to other distributed algorithms.

After calculating the priority function, each sensor now has an ordering of its local cover

sets in terms of preference. The goal is to try and satisfy the highest priority cover. However,

a cover comprises of multiple sensors and if one of these switches off, this cover cannot be

satisfied. Hence, each sensor now uses the automaton in Fig. 3.3 to decide whether it can

switch off or if it needs to remain on.
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Note that the automata for negotiation is simple because for coverage problems, we are

not negotiating for mutual compatibility/feasibility. The only concern of the negotiation

phase here is that of local optimality.

6.3 Applying the Coverage Framework

In this section we employ our framework to show how it can be applied to the Target,

Area, and k -coverage problems.

6.3.1 Target Coverage

In the target coverage problem, we are given a set of targets T = {t1, t2, ..., tm} that are

scattered around a region R. These targets are considered to be stationary. The objective

of the problem is to monitor all targets in T while maximizing the lifetime of the network.

In addition to the previous definitions, we define:

• T (s): The set of targets that sensor s can sense,

• N(s, k): The set of neighbors of sensor s at no more than k hops from s. This set is

closed i.e. it includes the sensor s.

• Local Cover Set : A local cover set for a sensor s is a minimal set of sensors in

N(s, 1) that cover all targets in T (s). For better performance, all targets in T (s′), s′ ∈

N(s, 1) orN(s, 2) can be considered.

Using the framework defined in Section 6.2, the phases of the algorithm can be specified

as follows. Note that we consider a 1-hop neighbor set i.e. N(s, 1). This can easily be

extended to more hops at a larger communication cost.

Compute, Weight and prioritize local solutions: Each sensor s communicates with each of

its neighbor s′ ∈ N(s, 1) exchanging locations, battery levels b(s) and b(s′), and the targets

covered T (s) and T (s′). Then it finds all the local covers using the sensors in N(s, 1) for

the target set being considered. The latter can be solely T (s) or could also include T (s′) for
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all s′ ∈ N(s, 1). It then constructs the local LD graph G = (V,E) over those covers, and

calculates the degree d(C) of each cover C ∈ V in the graph G.

Negotiate solutions : This round essentially remains the same with each sensor using the

automata of Fig. 3.3. Each cover set C in the automata is a set of sensors that can cover

the target set being considered.

Correctness: In [55] we present a proof to show that the proposed heuristic is correct,

terminates and is deadlock free.

Message and Time Complexity : If the maximum degree ∆ of the network graph is as-

sumed to be a constant, the message complexity is given by O(∆) and can also be considered

to be constant. If τ is the maximum number of targets in any sensors neighborhood, it can

be shown that the time complexity is given by O(∆τ ). Even though this is exponential, since

τ is usually small, the performance is not affected. See [55] for more details.

Self-organization and self-repair : The algorithm is self-organizing since each sensor s

can run its own automaton independently to arrive at a decision to switch on/off. By

exchanging messages, the sensor does however take into account its neighbors choices in

making a decision. Also, because the distributed algorithm is organized in rounds, it is

self-repairing. If a sensor fails, its neighbors can account for that in the following round as

they will not receive a ON message for that sensor. This limits the loss of coverage to a

maximum of one round.

6.3.2 Area Coverage

For the area coverage problem, we are given a region R and the goal is to have this region

completely covered at all times by active sensors.

In order to formulate the area coverage problem in our framework, consider any individual

sensor s. The area covered by this sensor can be represented as a disk with the sensor at the

center. The coverage objective of this sensor is to ensure that the area within its coverage disk

is completely covered at all times. Now, certain parts of this disk are covered by different
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sensors in N(s, 1). Hence, a cover set is any minimal set of sensors in s′ ∈ N(s, 1) that

together cover this entire area.

Figure 6.2. Example for area coverage

An example is shown in Figure 6.2. For the sensor s, the following set covers are possible

for its area, {s}, {s1, s2, s3} and {s2, s3, s4}. In order to compute what part of its area is

covered by its neighbors, each sensor s exchanges its location and its battery information

with its neighbors in N(s, 1). To determine what part of its area is covered by its neighbors,

we use the method described in [62] to determine sponsored coverage. Once sponsoring

information has been determined, a sensor can compute all cover sets for its area. The

weighting, prioritizing and negotiating phases of the framework then follow as in the target

coverage problem.

Alternatively, [61] defines a field as a set of points that are covered by the same set of

sensors. They then discretized the area into a grid. Once points have been grouped into

fields, all that is needed is to ensure that all fields are covered. Hence, each field corresponds

to a virtual target and the problem can effectively be reduced to that of target coverage. We

experiment with both the field based method and the direct formulation described above in

Section 6.4. A different approach is taken in [5], where the authors use the idea of covering

all the faces of a graph. This avoids having to define the granularity of a grid.
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6.3.3 k-Coverage

The k -Coverage problem can be defined for either target or area coverage. Here, we

discuss it in the context of target coverage. Let T = {t1, t2, ..., tm} be the set of targets

scattered around a region R. The goal is to ensure that for every t ∈ T at least k sensors

cover t at all times. Note that k ≤ δ, where δ is the minimum number of sensors covering

any target t ∈ T . See [66] [40] [72] for more details.

The extension of our framework to the k -Coverage problem is straightforward. All we

need to do is to ensure that every local cover C constructed during the initial setup phase is

a k -Cover. To construct local covers that are k-covering, each sensor picks k neighbors for

every target in T (s). By imposing this restriction on the local covers, we can ensure that

globally, every target t is k -Covered.

6.4 Simulation Results

In this section, we evaluate the performance of our coverage algorithms as compared with

LBP [6] and DEEPS [7]. The simulations were programmed using C++. A static network of

sensors is used. For the target coverage problem, the targets are considered to be static also.

For the area coverage problem, we use both our direct formulation and the concept of fields

(Section 6.3.2) to transform the area coverage problem into the target coverage problem.

Then the same algorithms are applied with these virtual targets. The k -coverage problem

is also simulated with respect to target coverage. However, since LBP and DEEPS are not

extended to solve this problem, we cannot compare our results to theirs for k -coverage.

We consider sensors scattered randomly in a 100m x 100m area. It is also assumed that

the communication range of each sensor is twice the sensing range. We consider two different

energy models. In the linear model, the energy required to sense a target at a distance d is

proportional to d. In the non-linear model, the energy needed to sense the same target is a

function of dp, where p varies typically from 2− 6. For our experiments, we fix the value of

d to 2 (quadratic model).
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Figure 6.3. Area coverage with Number of Sensors varying, Linear Energy Model

Table 6.1. Lifetime of a 2-covered vs. 1-covered network with 25 targets

No. of Sensors 1-covered 2-covered

40 13.8 8.7

60 22.4 14.1

80 33.4 19.8

100 37.2 23.2

120 45.6 27.1

The results for target coverage were presented in Chapter 3.

For the area coverage problem, once again sensors are scattered randomly in a 100m

x 100m area. However, now the objective is to continuously monitor the area. We apply

the same decomposition of a given graph into fields for the field based formulation. A

virtual target corresponding to each field is considered. By covering each of these virtual

targets, we ensure that all the fields and hence, the whole area is covered. We also use a

direct formulation as explained in Section 6.3.2. The results are shown in Figure 6.3. Once

again, a similar trend to the target coverage problem is observed with the 1-hop version

outperforming LBP and being very similar to DEEPS. The field based decomposition yields

slightly better results because of the loss in sponsored area calculation of the direct method

as explained in [62].

Finally, we implemented the k -coverage for k = 2, i.e., the two covered case where every

target is covered by at least two sensors. Since both LBP and DEEPS have not be extended
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to the k-coverage problem, we are unable to compare our performance relative to them.

Instead, we compared the lifetime for the 2-covered case with the 1-covered case for our

basic 1-hop algorithm. Using a network with 25 targets, we vary the number of sensors. The

energy model we consider is linear. The results are summarized in Table 6.1. On an average

we see a reduction of lifetime of 35-40% for the 2-covered case as compared to the 1-covered

case.



70

CHAPTER 7.

ADJUSTABLE RANGE SENSING MODELS

In this chapter we present our work on centralized and distributed scheduling algorithms

for sensor networks with a model where the sensors can adjust their sensing and communi-

cation radius. We begin by introducing the model in some detail and follow this up with

our centralized algorithms. Finally, we present an adjustable range variation of LBP and

DEEPS called ALBP and ADEEPS respectively.

7.1 The Adjustable Range Model

The adjustable range model was proposed independently by [65] and [70]. A signifi-

cantly improved model was presented by us in [21]. In this subsection, we briefly survey the

literature on extending the lifetime of WSNs using the adjustable range model.

In [65], the authors present two different coverage algorithms based on an adjustable

model where the sensor can chose between one of two different ranges and one of three (max-

imum, medium and small) different ranges. Their objective was to minimize the overlapped

area between sensor nodes, thereby resulting in energy savings. Their approach assumes that

sensors can determine their own locations. In their simulation study they model a 50X50m2

area containing 1000 sensor nodes. One drawback of their paper is that they do not compare

their heuristics to any other algorithms but compare their three adjustable models to each

other. One of their model shows an energy saving of 20% but this comes at the cost of a

10% lapse in coverage area.

[70] also address the problem of selecting a minimum energy connected sensor cover

when nodes have the ability to vary their sensing and transmission radius. The authors

present a number of centralized and distributed heuristics for this problem including greedy

formulations, Steiner Tree and Voronoi based approaches. The Voronoi based approach was

shown to result in the best gains. Their model gives sensors the ability to vary both the
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sensing and the communication range. The centralized algorithm (CGA) is shown to be with

O(logn) factor of the optimal, where n is the number of sensors in the network. The localized

algorithm based on Voronoi diagrams is shown to be very close to CGA in performance. An

extended version of this work was presented in [71].

In [11], the authors utilize a sensing model that allows a sensor to adjust its range

from one of several different fixed values. The authors address the problem of finding the

maximum number of sensor covers and they present a linear programming based formulation,

a linear programming based heuristic and also greedy formulations for this problem. A more

constrained case of the same problem is studied in [46]. The authors add the requirement

of connectivity to the sensor covers and present distributed heuristics to maximize the total

number of rounds. Their problem formulation attempts to maximize the number of set

covers such that each set monitors all targets and every sensor in every set is assigned a

range. They show that the problem is NP-complete by restriction and present an Integer

Program for it. Since Integer Programming is NP-Hard, the relax and round their solution

to derive a Linear Program for the problem. They also present a centralized greedy heuristic

and a distributed greedy heuristic. The greedy criteria is the contribution of a sensor given

as a ratio to the maximum possible contribution. An extended journal paper on this work

was published in [14].

We present a different model for adjusting the range in [21]. Instead of allowing a sensor

to adjust its range between a number of fixed options, we allow the nodes to vary their range

smoothly between 0 and rmax where, rmax is the maximum value for the range. We give

a mathematical model of this problem using a linear program with exponential number of

variables and solve this linear program using the approximation algorithm of [32], to provide

a (1 + ε)(1 + 2lnn) approximation of the problem.

More recently, [63] uses the adjustable range model to give two localized range optimiza-

tion schemes based on a one-hop approximation of the Delaunay Triangulation. They also
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show that their approximation scheme achieves the same results as the original Delaunay

Triangulation.

7.2 Network Model and Problem Statement

In this section we explain the sensor network model we use and give a formal definition

of the lifetime problem with adjustable ranges.

7.2.1 Network Model

The sensor network model we use is very similar to that used in [10]. We consider a

region R over which a set of static targets T = {t1, t2, ..., tn} are spread. A set of sensors

S = {s1, s2, ..., sm} are randomly deployed over the region R. Since deployment is random, the

number of sensors scattered is more than we need in the case of a determenistic deployment.

For each sensor, we also assume that it has the ability to adjust its sensing and transmis-

sion range. This model was introduced in [65, 70]. However, instead of assuming a discrete

set of values for the range like [11], we assume a sensor can vary its range smoothly from 0

to some maximum value. Note that several commercially available sensors have the ability

to do this.

7.2.2 Problem Statement

Sensor Network Lifetime Problem (SNLP) with range assignment

Given a monitored region R, a set of sensors {s1, s2, ..., sm} and a set of targets {t1, t2, ..., tn},

and energy supply bi for each sensor si, find a monitoring schedule (C1,T1),..., (Ck,Tk) and

a range assignment for each sensor in a set Ci such that:

1.
k∑
i=1

Ti

2. each set cover monitors all targets t1,...,tn and,

3. each sensor si does not appear in the sets C1,..Ck for a time more than bi where, bi is

the initial energy of sensor si.
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7.3 Centralized Algorithms

In this section we give a formal definition of the problem and the formulation of a linear

program to solve it.

7.3.1 Linear Program Formulation

In this section we present a Linear Programming formulation for SNLP lifetime problem.

Maximize :
m∑
j=1

Ti (7.1)

Subject to:
m∑
j=1

CijTi ≤ bi

where,

bi is the battery for sensor i

Rows i = 1,...,n represent each sensor

Columns j = 1,...,m represent each sensor cover, and

Cij =

{
0 if sensor i is not in the sensor cover j

g(d) if sensor i is in sensor cover j with a range d

g is a function of energy over distance.

This formulation for the LP is substantially different from the one in [10]. In their

formulation the objective function attempts to maximize the number of set covers upto

some limit K , whereas we maximize the actual network lifetime t. Also, it can be shown

that having more than n covers Cj with non-zero tj is of no use, where n is the order of

sensors. Thus, if the goal is to maximize the network lifetime, then the objective function of

the LP should reflect this. Also, our LP allows for sensors to have non-uniform battery life.

The linear program 7.1 is a packing LP that can be represented by the general form,

max {cT |Ax ≤ b, x ≥ 0}
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For the problem described above, the number of columns of the matrix A is exponential

in the number of sensors and in order to overcome this, we use the Garg-Knemann algorithm

[32] with an approximation ratio (1 + ε). The algorithm assumes that the LP is implicitly

given by a vector b ∈ Rm and an algorithm that provides an f -approximation to find the

column of A of minimizing length, where lengthy(j) =
∑
i

A(i, j)y(i)/c(j) for any positive

vector y. The algorithm is presented in Fig. 7.1.

Figure 7.1. The Garg-Konemann Algorithm [32]

Theorem: The Lifetime problem with adjustable sensing range assignment can be ap-

proximated within a factor of (1+ε)f , for any ε > 0 by using the Garg-Knemann Algorithm,

where f is the approximation ratio of the algorithm that picks the minimum weight column.

This result is implied by the Garg-Konemann algorithm [32].

7.3.2 Minimum Weight Sensor Cover Problem with Adjustable Sensing Range

With an adjustable sensing range sensor network, the problem of generating covers be-

comes much more interesting since we can now generate more covers simply by varying the

range of a sensor. In order to cover more targets we can increase the sensing range but this

comes at the cost of increasing the energy consumed. So the question really is one of what is
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Figure 7.2. The Greedy Algorithm for the Minimum Weight Sensor Cover Problem with
Adjustable Sensing Ranges
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the best sensing range a sensor can pick to cover uncovered targets while taking into account

increases in energy with distance.

Our f -approximation is a greedy heuristic that tries to add sensors to the set cover by

picking a sensor si with a sensing range ri that maximizes the following ratio:

Gval(si) = No. of uncovered targets covered bysi/ weight xei

Here, weight is the packing LP variable and is updated by Garg-Konemann. Also, ei is

a function of the distance dij between sensor si and target tj and can be varied to study

linear, quadratic and other energy models.

The algorithm is outlined in Fig. 7.2. We assume that there exists a cutoff distance

MAXDIST beyond which no sensor can increase its distance.

Theorem: The Greedy Algorithm for the Minimum Weight Sensor Cover Problem with

Adjustable Sensing Ranges has an approximation ratio (1 + lnk).

This is from the standard greedy algorithm for the Minimum Weight Set Cover Problem

with k points to cover.

COROLLARY. The Lifetime problem with adjustable sensing range assignment can

be approximated within a factor of (1 + ε)(1 + lnm) for any ε > 0 by using the Algorithm

of Fig. 7.1. This result comes from the previous two theorems with k = O(m) elements to

cover, m being the number of targets.

7.3.3 Experimental Evaluation

In this section, we evaluate the performance of our heuristic and compare it to that

proposed in [10]. For simulation purposes we use a static network of sensors scattered in a

100m x 100m area. The adjustable parameters are:

• N the number of sensor nodes. We vary this from 80 to 200.

• M the number of targets. Initial results are for 25 targets and 50 targets.

• The sensing range r which can vary smoothly from 5m to 60m.
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Figure 7.3. Variation in Network Lifetime with Number of Sensors. Number of Targets=25,
Energy model is linear. AR-SC denotes the algorithm in [10]

Figure 7.4. Variation in Network Lifetime with Number of Sensors. Number of Targets=50,
Energy model is linear
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In order to compare our results with [10], we use the linear and quadratic energy models

defined by them. The linear model specifies the energy ep needed to cover a target at distance

rp as ep = c1 ∗ rp where, c1 is a constant. For the quadratic model, ep = c2 ∗ r2
p where, c2 is

a constant. The range variation is the same as that for the discrete model except for that

fact that we allow it to vary smoothly. For comparison we run simulations against their

distributed version.

Figure 7.5. Variation in Network Lifetime with Number of Sensors. Number of Targets=25,
Energy model is quadratic

We have implemented our algorithm in C++ and run experiments on randomly generated

test cases. The ε value for the quality of the Garg- Konemann algorithm is set to 0.1. After

finding sensor covers from Garg-Konemann we find the optimal schedule by assigning the

best times for each cover by using CPLEX. Our results are shown below.

Figure 7.3 and Figure 7.4 illustrate the case with 25 and 50 targets respectively with

a linear energy model. We measure the variation in Network Lifetime with an increase

in the number of sensors. Figure 7.5 repeats the same experiment with 25 targets and a

quadratic energy model. As can be seen from the graphs, we have about an order of 4 times

improvement in network lifetime. The drastic performance improvement can be explained

by the following reasons:
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• Smoothly varying sensing range - The adjustable range model used in required that

the sensing range be increased in ’P’ discrete steps. We allow a smooth variation up

to a cutoff distance MAXDIST. This has the advantage that the sensor spends only

the energy required to reach the target and no more.

• Fractional time assignment to each sensor cover - Due to our LP formulation, we can

exploit the ability to assign fractional times to each sensor cover instead of assigning

time in fixed intervals.

• Provably good algorithm - As shown in Section 5 the heuristic has a provably good

approximation ratio of (1 + lnm).

7.4 Distributed Algorithms using Adjustable Range

7.4.1 Adjustable Range Load Balancing Protocol (ALBP)

In this section, we present a distributed load balancing protocol for sensors with an

adjustable range called ALBP. This protocol extends the ideas of LBP [6] to the adjustable

range model. As with LBP, the objective of the protocol is to maximize the time for which all

targets in the network are covered. The intuition behind the protocol is also similar to LBP,

the aim is to keep as many sensors alive by balancing their load so as to let them exhaust

their batteries simultaneously. ALBP, however, differs from LBP in that while making a

decision on switching a sensor to an active state, it also needs to decide what range this

sensor should have.

We begin by defining the different states a sensor can be in at any point of time:

• Active: The sensor is monitoring a target(’s).

• Idle: The sensor is listening to other neighboring sensors, but does not monitor targets.

• Deciding: The sensor is presently monitoring a target, but will change its state to

either active or idle soon.
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Setup: The setup phase starts as before. At the beginning of a round, each sensor

exchanges information on its battery level and the set of targets it covers with its neighbors.

However, after broadcasting this information, a sensor enters the deciding state with its

maximum range.

Figure 7.6. State transitions for the ALBP protocol

Transitions : Figure 7.6 shows the state transitions for ALBP. At the end of the setup

phase, each sensor is in the deciding state with its maximum range. A sensor then changes

its state according to the following transition rules:

• Active state with a range r: A sensor transitions to the Active State with a range

r, if there is a target at range r which is not covered by any other active or deciding

sensors.

• Deciding state with lower range: A sensor in the deciding state with some range r

can decrease its range to the next closest target if all its targets at range r are covered

by another sensor in the active state or by a sensor that is in the deciding state and

has a higher battery life.

• Idle state: A sensor is in the idle state if it has reduced its range to zero (i.e., all its

targets are covered by active sensors or higher energy sensors in the deciding state)

Every sensor uses these rules to make a decision on whether to enter the active or idle

state. The sensors will stay in this state until the end of a round, upon which the
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process will repeat itself. When the network reaches a point where a target cannot be

covered by any sensor, the network is considered dead.

Correctness: In ALBP, a sensor can enter the idle state only when its range reaches

zero. To achieve this, all its targets had to have been covered by an active or deciding

sensor that had a higher energy than it. Hence, all targets are always covered.

7.4.1.0.1 Time and Message Complexity: The time complexity of ALBP is

O(∆2) and the message complexity is O(∆) where, ∆ is the maximum degree of the

sensor graph.

At the start of a round, each sensor receives from every neighbor a message containing

the targets that neighbor covers, and its battery life. If ∆ is the maximum degree of

the graph, a sensor can have no more than ∆ neighbors. This means that a sensor can

receive no more than ∆ messages, which it can process in O(∆) time.

In the worst case, a sensor may have to wait for all its neighbors to decide their state

before it can make a decision. Thus, the waiting time accumulates as O(∆2), hence

the time complexity.

Since each sensor has at most ∆ neighbors and during a round a sensor sends at

most two messages to its neighbors (its battery and targets covered information, and

its status - on/off), at most O(∆) messages are sent in the setup phase. Hence, the

message complexity is O(∆).

7.4.2 Adjustable Range Deterministic Energy Efficient Protocol (ADEEPS)

In this subsection, we present an adjustable range version of the DEEPS protocol [7].

Each sensor can once again be in one of three states - active, deciding or idle. The definition

of these states remains as before.

We make use of similar concepts of sink and hill targets as DEEPS. However, instead of

defining these using the total battery of the sensors covering a target (as DEEPS does), we
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define them with respect to the maximum lifetime of the target. Let the lifetime of a sensor

with battery b, range r and using an energy model e be denoted as Lt(b, r, e). Then, the

maximum lifetime of a target would be Lt(b1, r1, e)+Lt(b2, r2, e)+Lt(b3, r3, e3)+ ... assuming

that it can be covered by some sensor with battery bi at distance ri for i = 1, 2, ....

Now, we can define the sink and hill targets as follows. A target t is a sink if it is the

smallest maximum lifetime target for at least one sensor covering t. A hill is a target which

is not a sink for any of the sensors covering it. We define the in-charge sensors for a target

t as follows:

• If the target t is a sink, then the sensor s covering t with the highest lifetime Lt(b, r, e)

for which t is the poorest is placed in-charge of t.

• If target t is a hill then out of the sensors covering t, the sensor s whose poorest target

has the highest lifetime is placed in-charge of t. If there are several such sensors, then

the richest among them is placed in-charge of t.

Setup: Each sensor initially broadcast its lifetime and covered targets to all neighbors of

neighbors. This is similar to [7]. After this, it stays in the deciding state with its maximum

range.

Transitions : A sensor that is in the deciding state with range r changes its state according

to the following rules:

• Active state with a range r: If there is a target at range r which is not covered by

any other active or deciding sensors, the sensor enters the Active state with range r.

• Deciding state with lower range: A sensor in the deciding state with some range

r can decrease its range to the next closest in-charge target if all its in-charge targets

at range r are covered by another sensor in the active state or by a sensor that is in

the deciding state and has a higher battery life.

• Idle state: When a sensor s is not in-charge of any target except those already covered

by on-sensors, s switches itself to the idle state.
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The algorithm again operates in rounds. When there exists a target that cannot be

covered by any sensor, the network is considered to be dead.

Correctness: The correctness of ADEEPS can be proved from the fact that each target

has a sensor which is in-charge of that target and the transition rule to active state assures

that the resultant sensor cover is minimal in which each sensor s has a target covered only

by s.

Time and Message Complexity: In each round, the time complexity of ADEEPS is

O(∆2) and the message complexity is O(∆2) where, ∆ is the maximum degree of the graph.

Each sensor has no more than ∆ neighbors. At the start of each round, every sensor

receives from its neighbors and their neighbors (2-hops) information about their lifetime and

the targets covered. Thus a sensor can receive at most ∆2 messages. Once this information

has been received, all decisions on sink/hill targets, in-charge sensor and the active/idle state

can be made locally. Thus the time complexity is O(∆2).

Also, since a sensor has at most ∆ neighbors and it needs to communicate the setup

information to two-hops, each sensor sends O(∆2) messages in the setup phase. This means

that the message complexity is O(∆2).

Figure 7.7. Variation in network lifetime with the number of sensors with 25 targets, linear
energy model, 30m range
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7.5 Simulations

To evaluate the performance of the new algorithms and to make comparison with the

algorithms in [6, 7], the new algorithms are implemented by using C++. We built on the

source code for [6, 7]. For the simulation environments, a static wireless network of sensors

and targets which are scattered randomly, while ensuring that all targets can be covered, in

100m×100m area is considered. The location of the sensor nodes can be randomly generated

and the targets can also be placed randomly.

We assume that the communication range of each sensor is two times the sensing range.

Simulations are carried out by varying the number of sensors and the lifetime is measured.

We also vary the maximum range, energy models, and numbers of targets with various

combinations. For these simulations, we use the linear energy model wherein the power

required to sense a target at distance d is proportional to d. We also experiment with the

quadratic energy model (power proportional to d2). Note that to facilitate comparison, we

follow the simulation setup of [6, 7].

In the first simulation shown in Figure 7.7, we limit the maximum range to 30m. This

means that a sensor can smoothly vary its range from 0 to 30m. The simulation is conducted

with 25 randomly deployed targets, 40 to 200 sensors with an increment of 20 and a linear

energy model. As is expected, increasing the number of sensors while keeping the number of

targets fixed causes the lifetime to increase for all the protocols. Also, using the adjustable

range model shows performance improvements when compared to the fixed range model.

As can be seen from the figure, ALBP outperforms LBP by at least 10% and ADEEPS

outperforms DEEPS by around 20%.

In the second simulation shown in Figure 7.8, we study the network lifetime while in-

creasing the number of targets to 50 and keeping maximum range at 30m. The numbers of

sensors are varied from 40 to 200 with an increment of 20 and the energy model is linear.

The results of simulations are consistent and showed that the network lifetime increases with

the number of sensors. When compared with the results of Figure 7.7, the network lifetime
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Figure 7.8. Variation in network lifetime with the number of sensors with 50 targets, linear
energy model, 60m range

decreases as more targets are monitored. This is also a logical conclusion, since a larger

number of targets implies that there is more work to be done by the network as a whole.

26%

26%

Figure 7.9. Variation in network lifetime with the number of sensors, with 25 targets,
quadratic energy model and 30m maximum range

In Figure 7.9, we change the energy model to the quadratic model. We use the same num-

ber of sensors (40 to 200 with increment of 20), the maximum range is 30m and the energy

model is quadratic. As in Figure 7.7, for both energy models, the result indicates that the

network lifetime increases with the number of sensors. As is expected, the quadratic model
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causes all protocols to reduce in total lifetime when compared to the linear model of Figure

7.7. It can also be seen that the network lifetime is significantly improved with ALBP and

ADEEPS in the quadratic model. This phenomenon is quite logical since in the fixed sensing

model, each sensor consumes more energy than the adjustable range model. Improvements

here are in the range of 35-40% when compared to their fixed range counterparts.

Figure 7.10. Average numbers of messages sent during each round

Finally, in Figure 7.10, we plot the average numbers of messages sent during each round.

It can be seen that more messages are sent when the number of deployed sensors increases

and the average messages sent in DEEPS and ADEEPS are much higher than LBP and

ALBP. This is because in DEEPS and ADEEPS the communication range is four times

higher than the sensing range and each sensor has more neighbors and needs to send more

messages (in effect communicating with 2-hop neighbors).

From the results, the overall improvement in network lifetime of ALBP over LBP is

around 10% and ADEEPS over DEEPS is about 20% for linear energy model. For quadratic

energy model, the improvements are even higher.
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The design process to transform LBP to ALBP and DEEPS to ADEEPS was fairly

simple. This shows that the basic algorithms are easily extended to the adjustable range

model with minimal effort. As part of our future work, we are examining the extension of the

lifetime dependency graph model based heuristics to the adjustable range model. Accounting

for the ability to adjust ranges is not trivial in the dependency graph and some thought is

needed to determine how to assign ranges in that model to even compute cover sets for the

LD graph.
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CHAPTER 8.

CONCLUSION AND FUTURE WORK

Despite a lot of research effort, creating real-world deployable sensor networks remains

a difficult task. A key bottleneck is the limited battery life of sensor motes. Hence, energy

conservation at every layer of the network stack is critical. Creating realistic theoretical

models for problems in this domain that take this into account remains a challenge. Our

work addresses energy efficiency at only point in the network stack. However, a holistic

approach to energy efficiency design should not only account for energy concerns in each

layer of the network stack for problems like routing, medium access etc., but also consider

cross-layer issues and interactions.

In this dissertation, we present innovative models and heuristics to address the coverage

problem in Wireless Sensor Networks. Our work points to the potential of lifetime de-

pendency graphs while serving to highlight the shortcomings of using standard distributed

algorithms to this problem. In order to successfully bridge the gap between the theory and

practice of wireless sensor networks, there is a clear need for algorithms that are designed

keeping the unique constraints of these networks in mind. The improvements in network

lifetime obtained by our approach using the dependency graph and heuristics that stem

serve to underscore this point. The fact that this work can be extended to other graph and

network problems shows the broader applicability of the underlying theory.

It is my goal to expand my work on energy efficiency in WSNs to examine related problems

like routing and clustering. Also, developing application specific energy aware techniques is

a key challenge specially in the area of environmental sensing applications.

Future Work

As part of our future work, we intend to extend the dependency graph and the equivalence

class graph ideas to heterogeneous wireless sensor networks, work on tighter bounds and

apply our results to related problems.
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• Extend Simulation Studies: As part of the future work related to this dissertation, we

intend to implement our algorithms in a more detailed network simulator environment

like ns-2 [2]. This will allow us to study the impact of these algorithms across sev-

eral network parameters. In particular, it will allows us to better study the message

complexity and measure the energy spent on control messages for implementing the

heuristics.

• Adjustable Sensing Range: Recent work in [10, 21] have introduced the model of sensors

with adjustable sensing ranges varying between zero (switched off) and a maximum.

The adjustable range problem is more complex since even locally it further increases the

space of possible covers. This also relates to how we represent the adjustable ranges.

[10] models each sensor as having k discrete ranges. In [21], we modeled sensors as

having the ability to smoothly vary its range. This closely represents a real sensor and

since a sensor s effectively has only a maximum of |T (s)| number of ranges, the set of

targets covered by sensor s, the smooth model results in further improvements in the

lifetime.

Our LD graph could be adapted to now construct all covers with each of the |T (s)|

ranges per sensor, but this will be very inefficient even for small neighborhoods. Hence

we need to look beyond this and use some of the techniques that we propose to handle

the exponential space in Chapter 5. As discussed in that section, we can split the

space into n classes where covers are grouped by sharing the same bottleneck. This

definition remains valid in the adjustable model also but now the different covers in

the equivalent class of a sensor s can have s being used with different ranges. Thus,

each class [s] now has subclasses corresponding to each sensing range. However, when

a cover is being burnt from class [s], all the covers of that class are also burnt. This

would indicate that s has a specific range in OPT at any time. It is clear that for

sensors covering the bottleneck targets the smallest range should be used. For other

sensors, some form of sampling across the different ranges can be used to represent each
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subclass in the LD graph model. Thus, experimental techniques for the dependency

graph can be extended to these networks.

• Non-Identical Sensing Shape: Studying the impact of non-identical sensing shapes

on coverage algorithms can be done using two different scenarios. The first is one

where the communication links are not bidirectional. This implies that the sensor

communication graph, SN, is a directed graph. The second scenario is that the sensing

range of a sensor is not represented by a fixed shape (like circular).

Both these scenarios are common in real world applications and some models in the

literature have been adapted to handle these [42, 41]. Our framework is robust enough

to handle both of these conditions without much change. For the first condition,

consider two sensors s1 and s2. Directional links implies that one of these sensors,

say s2, can receive messages from s1 but not vice versa. This in turn means that s2

has a richer information set to use in its decision making process - since it probably

has better/more cover sets. But other than that, the different phases of our proposed

approach are not impacted in any way. An interesting point to investigate here would

be the degradation of performance due to directional links of our proposed approach

when compared to other algorithms that can also operate with directional links.

The second scenario of uneven sensing shape is handled easily since our algorithms make

no assumptions of the shape. The only information a sensor s requires is knowledge of

what targets T (s) it can cover. Therefore, shape is not required to be circular.

• Using an Overlay Network: Another common view of a heterogeneous network in the

literature is one where there are a few high/unlimited energy nodes that form a fast

communication backbone for the network along with normal sensor nodes. An example

of such nodes is the Intel Xscale [1] 802.11 nodes. This has the effect of folding the

network since two sensors that may be many hops away from each other now appear to

be much closer due to the super nodes. Experiments carried out at Intel have shown
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that even with a few plugged-in XScale nodes, the lifetime of the network increases by

about 20%.

In our model, the overlay network can be used in several different ways. Since the

lifetime of the network is bounded by the global bottleneck target, this can be identified

and this information shared using the overlay, thereby allowing a better selection of

covers. Another instance where this is useful is in determining the duration of a round.

Instead of using predetermined constant duration rounds, the overlay can propagate

the battery level of the global bottleneck sensor and this can be used as the duration

of a round for that particular iteration. This would reduce the number of rounds and

thereby the costs associated with each reshuffle.

• Approximation Ratios: While the range of heuristics we have proposed have been

extensively simulated and evaluated against comparable work in the literature, we

have not investigated the approximation ratios for our algorithms. As part of the

future theoretical work tied to this dissertation, we expect to establish approximation

ratios for these heuristics. This also ties in to our next goal of providing tighter upper

bounds for the maximum lifetime scheduling problem.

• Upper Bounds: In the literature, the upper bound on the network lifetime is computed

by calculating the amount of time the weakest (least-covered) target can be covered

[39]. This is given by the sum of the batteries of all sensors covering this target - known

as the bottleneck target. This bound is simplistic and loose because it assumes that

each sensor covering this target can be burnt in a mutually exclusive manner.

The lifetime dependency graph holds the potential to give us a tighter upper bound

on the lifetime. At the very least, the edges in the dependency graph tell us whether

a sensor is being burnt exclusive of other sensors. For the two-node case, a tighter

upperbound is provided by the adjoining edge in the dependency graph [55]. It is

important to extend these bounds and investigate how the sub-clique that exists among
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nodes in the same class can be burnt. This can then provide some clues on how to

better bound the lifetime of the network. Another possibility is to consider the sensors

covering the bottleneck target. There exists an equivalence class corresponding to each

such sensor. The EC graph induced by these classes may result in tighter upperbounds

than the trivial.
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