293 research outputs found

    Ciphertext-Policy Attribute-Based Broadcast Encryption with Small Keys

    Get PDF
    Broadcasting is a very efficient way to securely transmit information to a large set of geographically scattered receivers, and in practice, it is often the case that these receivers can be grouped in sets sharing common characteristics (or attributes). We describe in this paper an efficient ciphertext-policy attribute-based broadcast encryption scheme (CP-ABBE) supporting negative attributes and able to handle access policies in conjunctive normal form (CNF). Essentially, our scheme is a combination of the Boneh-Gentry-Waters broadcast encryption and of the Lewko-Sahai-Waters revocation schemes; the former is used to express attribute-based access policies while the latter is dedicated to the revocation of individual receivers. Our scheme is the first one that involves a public key and private keys having a size that is independent of the number of receivers registered in the system. Its selective security is proven with respect to the Generalized Diffie-Hellman Exponent (GDHE) problem on bilinear groups

    Survey on Encryption Techniques in Delay and Disruption Tolerant Network

    Full text link
    Delay and disruption tolerant network (DTN) is used for long area communication in computer network, where there is no direct connection between the sender and receiver and there was no internet facility. Delay tolerant network generally perform store and forward techniques as a result intermediate node can view the message, the possible solution is using encryption techniques to protect the message. Starting stages of DTN RSA, DES, 3DES encryption algorithms are used but now a day\u27s attribute based encryption (ABE) techniques are used. Attribute based encryption technique can be classified in to two, key policy attribute based encryption (KPABE) and cipher policy attribute based encryption (CPABE). In this paper we perform a categorized survey on different encryption techniques presents in delay tolerant networks. This categorized survey is very helpful for researchers to propose modified encryption techniques. Finally the paper compares the performance and effectiveness of different encryption algorithms

    Exclusion-intersection encryption

    Get PDF
    Identity-based encryption (IBE) has shown to be a useful cryptographic scheme enabling secure yet flexible role-based access control. We propose a new variant of IBE named as exclusion-intersection encryption: during encryption, the sender can specify the targeted groups that are legitimate and interested in reading the documents; there exists a trusted key generation centre generating the intersection private decryption keys on request. This special private key can only be used to decrypt the ciphertext which is of all the specified groups' interests, its holders are excluded from decrypting when the documents are not targeted to all these groups (e.g., the ciphertext of only a single group's interest). While recent advances in cryptographic techniques (e.g., attribute-based encryption or wicked IBE) can support a more general access control policy, the private key size may be as long as the number of attributes or identifiers that can be specified in a ciphertext, which is undesirable, especially when each user may receive a number of such keys for different decryption power. One of the applications of our notion is to support an ad-hoc joint project of two or more groups which needs extra helpers that are not from any particular group. © 2011 IEEE.published_or_final_versionThe 1st IEEE International Workshop on Security in Computers, Networking and Communications (SCNC 2011) in conjuntion with IEEE INFOCOM 2011, Shanghai, China, 10-15 April 2011. In Conference Proceedings of INFOCOM WKSHPS, 2011, p. 1048-1053The 1st IEEE International Workshop on Security in Computers, Networking and Communications (SCNC 2011) in conjuntion with IEEE INFOCOM 2011, Shanghai, China, 10-15 April 2011. In Conference Proceedings of INFOCOM WKSHPS, 2011, p. 1048-105

    User-Centric Security and Privacy Mechanisms in Untrusted Networking and Computing Environments

    Get PDF
    Our modern society is increasingly relying on the collection, processing, and sharing of digital information. There are two fundamental trends: (1) Enabled by the rapid developments in sensor, wireless, and networking technologies, communication and networking are becoming more and more pervasive and ad hoc. (2) Driven by the explosive growth of hardware and software capabilities, computation power is becoming a public utility and information is often stored in centralized servers which facilitate ubiquitous access and sharing. Many emerging platforms and systems hinge on both dimensions, such as E-healthcare and Smart Grid. However, the majority information handled by these critical systems is usually sensitive and of high value, while various security breaches could compromise the social welfare of these systems. Thus there is an urgent need to develop security and privacy mechanisms to protect the authenticity, integrity and confidentiality of the collected data, and to control the disclosure of private information. In achieving that, two unique challenges arise: (1) There lacks centralized trusted parties in pervasive networking; (2) The remote data servers tend not to be trusted by system users in handling their data. They make existing security solutions developed for traditional networked information systems unsuitable. To this end, in this dissertation we propose a series of user-centric security and privacy mechanisms that resolve these challenging issues in untrusted network and computing environments, spanning wireless body area networks (WBAN), mobile social networks (MSN), and cloud computing. The main contributions of this dissertation are fourfold. First, we propose a secure ad hoc trust initialization protocol for WBAN, without relying on any pre-established security context among nodes, while defending against a powerful wireless attacker that may or may not compromise sensor nodes. The protocol is highly usable for a human user. Second, we present novel schemes for sharing sensitive information among distributed mobile hosts in MSN which preserves user privacy, where the users neither need to fully trust each other nor rely on any central trusted party. Third, to realize owner-controlled sharing of sensitive data stored on untrusted servers, we put forward a data access control framework using Multi-Authority Attribute-Based Encryption (ABE), that supports scalable fine-grained access and on-demand user revocation, and is free of key-escrow. Finally, we propose mechanisms for authorized keyword search over encrypted data on untrusted servers, with efficient multi-dimensional range, subset and equality query capabilities, and with enhanced search privacy. The common characteristic of our contributions is they minimize the extent of trust that users must place in the corresponding network or computing environments, in a way that is user-centric, i.e., favoring individual owners/users

    Efficient Multi-User Keyword Search over Encrypted Data in Cloud Computing

    Get PDF
    As cloud computing becomes prevalent, more and more sensitive information are being centralized into the cloud. For the protection of data privacy, sensitive data usually have to be encrypted before outsourcing, which makes effective data utilization a very challenging task. In this paper, we propose a new method to enable effective fuzzy keyword search in a multi-user system over encrypted cloud data while maintaining keyword privacy. In this new system, differential searching privileges are supported, which is achieved with the technique of attribute-based encryption. Edit distance is utilized to quantify keywords similarity and develop fuzzy keyword search technique, which achieve optimized storage and representation overheads. We further propose a symbol-based trie-traverse searching scheme to improve the search efficiency. Through rigorous security analysis, we show that our proposed solution is secure and privacy-preserving, while correctly realizing the goal of fuzzy keyword search with multiple users

    Extended Functionality in Verifiable Searchable Encryption

    Get PDF
    Abstract. When outsourcing the storage of sensitive data to an (un-trusted) remote server, a data owner may choose to encrypt the data beforehand to preserve confidentiality. However, it is then difficult to efficiently retrieve specific portions of the data as the server is unable to identify the relevant information. Searchable encryption has been well studied as a solution to this problem, allowing data owners and other au-thorised users to generate search queries which the server may execute over the encrypted data to identify relevant data portions. However, many current schemes lack two important properties: verifia-bility of search results, and expressive queries. We introduce Extended Verifiable Searchable Encryption (eVSE) that permits a user to verify that search results are correct and complete. We also permit verifiabl
    • …
    corecore