4,362 research outputs found

    WhiteHaul: an efficient spectrum aggregation system for low-cost and high capacity backhaul over white spaces

    Get PDF
    We address the challenge of backhaul connectivity for rural and developing regions, which is essential for universal fixed/mobile Internet access. To this end, we propose to exploit the TV white space (TVWS) spectrum for its attractive properties: low cost, abundance in under-served regions and favorable propagation characteristics. Specifically, we propose a system called WhiteHaul for the efficient aggregation of the TVWS spectrum tailored for the backhaul use case. At the core of WhiteHaul are two key innovations: (i) a TVWS conversion substrate that can efficiently handle multiple non-contiguous chunks of TVWS spectrum using multiple low cost 802.11n/ac cards but with a single antenna; (ii) novel use of MPTCP as a link-level tunnel abstraction and its use for efficiently aggregating multiple chunks of the TVWS spectrum via a novel uncoupled, cross-layer congestion control algorithm. Through extensive evaluations using a prototype implementation of WhiteHaul, we show that: (a) WhiteHaul can aggregate almost the whole of TV band with 3 interfaces and achieve nearly 600Mbps TCP throughput; (b) the WhiteHaul MPTCP congestion control algorithm provides an order of magnitude improvement over state of the art algorithms for typical TVWS backhaul links. We also present additional measurement and simulation based results to evaluate other aspects of the WhiteHaul design

    WhiteHaul: An Efficient Spectrum Aggregation System for Low-Cost and High Capacity Backhaul over White Spaces

    Get PDF
    We address the challenge of backhaul connectivity for rural and developing regions, which is essential for universal fixed/mobile Internet access. To this end, we propose to exploit the TV white space (TVWS) spectrum for its attractive properties: low cost, abundance in under-served regions and favorable propagation characteristics. Specifically, we propose a system called WhiteHaul for the efficient aggregation of the TVWS spectrum tailored for the backhaul use case. At the core of WhiteHaul are two key innovations: (i) a TVWS conversion substrate that can efficiently handle multiple non-contiguous chunks of TVWS spectrum using multiple low cost 802.11n/ac cards but with a single antenna; (ii) novel use of MPTCP as a link-level tunnel abstraction and its use for efficiently aggregating multiple chunks of the TVWS spectrum via a novel uncoupled, cross-layer congestion control algorithm. Through extensive evaluations using a prototype implementation of WhiteHaul, we show that: (a) WhiteHaul can aggregate almost the whole of TV band with 3 interfaces and achieve nearly 600Mbps TCP throughput; (b) the WhiteHaul MPTCP congestion control algorithm provides an order of magnitude improvement over state of the art algorithms for typical TVWS backhaul links. We also present additional measurement and simulation based results to evaluate other aspects of the WhiteHaul design

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    Mass-Market Receiver for Static Positioning: Tests and Statistical Analyses

    Get PDF
    Nowadays, there are several low cost GPS receivers able to provide both pseudorange and carrier phase measurements in the L1band, that allow to have good realtime performances in outdoor condition. The present paper describes a set of dedicated tests in order to evaluate the positioning accuracy in static conditions. The quality of the pseudorange and the carrier phase measurements let hope for interesting results. The use of such kind of receiver could be extended to a large number of professional applications, like engineering fields: survey, georeferencing, monitoring, cadastral mapping and cadastral road. In this work, the receivers performance is verified considering a single frequency solution trying to fix the phase ambiguity, when possible. Different solutions are defined: code, float and fix solutions. In order to solve the phase ambiguities different methods are considered. Each test performed is statistically analyzed, highlighting the effects of different factors on precision and accurac

    A Survey on Communication Networks for Electric System Automation

    Get PDF
    Published in Computer Networks 50 (2006) 877–897, an Elsevier journal. The definitive version of this publication is available from Science Direct. Digital Object Identifier:10.1016/j.comnet.2006.01.005In today’s competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial demands of electric utilities require a high-performance data communication network that supports both existing functionalities and future operational requirements. In this respect, since such a communication network constitutes the core of the electric system automation applications, the design of a cost-effective and reliable network architecture is crucial. In this paper, the opportunities and challenges of a hybrid network architecture are discussed for electric system automation. More specifically, Internet based Virtual Private Networks, power line communications, satellite communications and wireless communications (wireless sensor networks, WiMAX and wireless mesh networks) are described in detail. The motivation of this paper is to provide a better understanding of the hybrid network architecture that can provide heterogeneous electric system automation application requirements. In this regard, our aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision making process more effective and direct.This work was supported by NEETRAC under Project #04-157

    Interwoven Waves:Enhancing the Scalability and Robustness of Wi-Fi Channel State Information for Human Activity Recognition

    Get PDF
    This PhD dissertation investigates the future of unobtrusive radio wave-based sensing, specifically focusing on Wi-Fi sensing in realistic healthcare scenarios. Wi-Fi sensing leverages the analysis of multi-path reflections of radio waves to monitor human activities and physiological states, providing a scalable solution without intruding on daily life.Wi-Fi-based sensing, particularly through channel state information, fits well in healthcare due to its ubiquitous presence and unobtrusiveness. As our society ages and populations grow, continuous health monitoring becomes increasingly critical. Existing solutions like wearable devices, audiovisual technologies, and expensive infrastructure modifications each have limitations, such as forgetting to wear devices, privacy invasions, and high costs. Channel state information-based sensing offers a promising alternative, enabling remote monitoring without the need for additional infrastructure changes.Nevertheless, implementing channel state information-based sensing in already congested Wi-Fi bands could present challenges in the future. Current solutions often exacerbate congestion by adding random noise, which can degrade network performance. These solutions also tend to address niche problems in idealistic settings, making it difficult to justify their use in everyday environments due to potential impacts on network latency and overall user experience.To realise the potential of Wi-Fi sensing, future solutions must integrate seamlessly with wireless communication networks, ensuring that sensing and communication processes coexist and collaborate effectively. This dissertation categorises the relationship between sensing and communication into three models: parasitic, opportunistic, and mutualistic. In the parasitic model, sensing operates independently of the wireless infrastructure, potentially adding noise and congestion. The opportunistic model leverages existing traffic flows, avoiding adverse effects on communication. The mutualistic model aims for a balance, enhancing both sensing and communication without compromising either function.The primary research objective is to enhance the robustness and scalability of channel state information-based sensing for human activity recognition, facilitating seamless integration into home environments with minimal impact on existing infrastructure. Overall, this dissertation provides an exploration of the challenges and solutions for unobtrusive Wi-Fi sensing in healthcare, paving the way for future advancements in the field
    • …
    corecore