2 research outputs found

    Computational studies on complex reaction mechanics

    Get PDF
    Molecular modeling with density functional and higher level methods was used to study mechanisms for the reactions of carbonyl compounds with ozone, the Doering-Moore-Skattebol Rearrangement, bis-lactam cyclizations, and thermal rearrangements of ortho-ethynyltoluene. Ozonation of both formaldehyde and acetone can proceed by one of two slow pathways: stepwise addition across the carbonyl group or hydrogen atom abstraction. The Doering-Moore-Skattebol Rearrangement proceeds as a triangular lithium-halogen carbenoid, opening stereospecifically to an allene, with lithium-halogen dissociation occurring after the transition state. Bis-lactam cyclization is rapid, reversible, and thermodynamically controlled. The experimentally observed major product is confirmed by computations as thermodynamically most stable. Thermal rearrangements of o-ethynyltoluene proceed through competitive [1,2] and [1,5] H-shifts. Chrysene is formed as a minor product by dimerization of a novel intermediate, orthoxylallene
    corecore