4 research outputs found

    Network Function Virtualization in Dynamic Networks: A Stochastic Perspective

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordAs a key enabling technology for 5G network softwarization, Network Function Virtualization (NFV) provides an efficient paradigm to optimize network resource utility for the benefits of both network providers and users. However, the inherent network dynamics and uncertainties from 5G infrastructure, resources and applications are slowing down the further adoption of NFV in many emerging networking applications. Motivated by this, in this paper, we investigate the issues of network utility degradation when implementing NFV in dynamic networks, and design a proactive NFV solution from a fully stochastic perspective. Unlike existing deterministic NFV solutions, which assume given network capacities and/or static service quality demands, this paper explicitly integrates the knowledge of influential network variations into a twostage stochastic resource utilization model. By exploiting the hierarchical decision structures in this problem, a distributed computing framework with two-level decomposition is designed to facilitate a distributed implementation of the proposed model in large-scale networks. The experimental results demonstrate that the proposed solution not only improves 3∼5 folds of network performance, but also effectively reduces the risk of service quality violation.The work of Xiangle Cheng is partially supported by the China Scholarship Council for the study at the University of Exeter. This work is also partially supported by the UK EPSRC project (Grant No.: EP/R030863/1)

    Conformal Mapping for Optimal Network Slice Planning based on Canonical Domains

    No full text
    | openaire: EC/H2020/723172/EU//5GPagodaThe evolution towards 5G consists of managing highly dynamic networks and making decisions related to the provisioning of networks in an as-a-service and cost-aware fashion. This is translated by 5G verticals that are dedicated to specific services, applications or use cases fulfilling the constant demand of vertical industries. In this vein, to achieve the high-level goals defined by operators and service providers, and to answer to the elasticity and low-latency specifications of the upcoming 5G mobile system, the optimal placement of Virtual Network Functions (VNF) must cope with the non-uniform service demands and the irregular nature of network topologies. This paper addresses this issue by mapping the non-uniform distribution of signaling messages in the physical domain to a new uniform environment (i.e., canonical domain) whereby the placement of core functions is more feasible and efficient by means of Schwartz-Christoffel conformal mappings. The experimentation results, compared to some baseline approaches, have proven the efficiency of the conformal mapping based placement in allocating the virtual resources (i.e., virtual CPU and virtual storage) with regard to the optimal end-to-end delay, cost and activated Virtual Machines (VMs). Another interesting contribution is that all placement decisions are based on a realistic spatio-temporal user-centric model, which defines both the mobility of User Equipments (UEs) and the underlying service usage.Peer reviewe

    Conformal Mapping for Optimal Network Slice Planning Based on Canonical Domains

    No full text

    Leveraging Cloud-based NFV and SDN Platform Towards Quality-Driven Next-Generation Mobile Networks

    Get PDF
    Network virtualization has become a key approach for Network Service Providers (NSPs) to mitigate the challenge of the continually increasing demands for network services. Tightly coupled with their software components, legacy network devices are difficult to upgrade or modify to meet the dynamically changing end-user needs. To virtualize their infrastructure and mitigate those challenges, NSPs have started to adopt Software Defined Networking (SDN) and Network Function Virtualization (NFV). To this end, this thesis addresses the challenges faced on the road of transforming the legacy networking infrastructure to a more dynamic and agile virtualized environment to meet the rapidly increasing demand for network services and serve as an enabler for key emerging technologies such as the Internet of Things (IoT) and 5G networking. The thesis considers different approaches and platforms to serve as an NFV/SDN based cloud applications while closely considering how such an environment deploys its virtualized services to optimize the network and reducing their costs. The thesis starts first by defining the standards of adopting microservices as architecture for NFV. Then, it focuses on the latency-aware deployment approach of virtual network functions (VNFs) forming service function chains (SFC) in a cloud environment. This approach ensures that NSPs still meet their strict quality of service and service level agreements while considering both functional and non-functional constraints of the NFV-based applications such as, delay, resource allocation, and intercorrelation between VNF instances. In addition, the thesis proposes a detailed approach on recovering and handling of those instances by optimizing the decision of migrating or re-instantiating the virtualized services upon a sudden event (failure/overload…). All the proposed approaches contribute to the orchestration of NFV applications to meet the requirements of the IoT and NGNs era
    corecore