19,807 research outputs found

    Preference fusion and Condorcet's Paradox under uncertainty

    Get PDF
    Facing an unknown situation, a person may not be able to firmly elicit his/her preferences over different alternatives, so he/she tends to express uncertain preferences. Given a community of different persons expressing their preferences over certain alternatives under uncertainty, to get a collective representative opinion of the whole community, a preference fusion process is required. The aim of this work is to propose a preference fusion method that copes with uncertainty and escape from the Condorcet paradox. To model preferences under uncertainty, we propose to develop a model of preferences based on belief function theory that accurately describes and captures the uncertainty associated with individual or collective preferences. This work improves and extends the previous results. This work improves and extends the contribution presented in a previous work. The benefits of our contribution are twofold. On the one hand, we propose a qualitative and expressive preference modeling strategy based on belief-function theory which scales better with the number of sources. On the other hand, we propose an incremental distance-based algorithm (using Jousselme distance) for the construction of the collective preference order to avoid the Condorcet Paradox.Comment: International Conference on Information Fusion, Jul 2017, Xi'an, Chin

    A portable platform for accelerated PIC codes and its application to GPUs using OpenACC

    Get PDF
    We present a portable platform, called PIC_ENGINE, for accelerating Particle-In-Cell (PIC) codes on heterogeneous many-core architectures such as Graphic Processing Units (GPUs). The aim of this development is efficient simulations on future exascale systems by allowing different parallelization strategies depending on the application problem and the specific architecture. To this end, this platform contains the basic steps of the PIC algorithm and has been designed as a test bed for different algorithmic options and data structures. Among the architectures that this engine can explore, particular attention is given here to systems equipped with GPUs. The study demonstrates that our portable PIC implementation based on the OpenACC programming model can achieve performance closely matching theoretical predictions. Using the Cray XC30 system, Piz Daint, at the Swiss National Supercomputing Centre (CSCS), we show that PIC_ENGINE running on an NVIDIA Kepler K20X GPU can outperform the one on an Intel Sandybridge 8-core CPU by a factor of 3.4

    A Probabilistic Data Fusion Modeling Approach for Extracting True Values from Uncertain and Conflicting Attributes

    Get PDF
    Real-world data obtained from integrating heterogeneous data sources are often multi-valued, uncertain, imprecise, error-prone, outdated, and have different degrees of accuracy and correctness. It is critical to resolve data uncertainty and conflicts to present quality data that reflect actual world values. This task is called data fusion. In this paper, we deal with the problem of data fusion based on probabilistic entity linkage and uncertainty management in conflict data. Data fusion has been widely explored in the research community. However, concerns such as explicit uncertainty management and on-demand data fusion, which can cope with dynamic data sources, have not been studied well. This paper proposes a new probabilistic data fusion modeling approach that attempts to find true data values under conditions of uncertain or conflicted multi-valued attributes. These attributes are generated from the probabilistic linkage and merging alternatives of multi-corresponding entities. Consequently, the paper identifies and formulates several data fusion cases and sample spaces that require further conditional computation using our computational fusion method. The identification is established to fit with a real-world data fusion problem. In the real world, there is always the possibility of heterogeneous data sources, the integration of probabilistic entities, single or multiple truth values for certain attributes, and different combinations of attribute values as alternatives for each generated entity. We validate our probabilistic data fusion approach through mathematical representation based on three data sources with different reliability scores. The validity of the approach was assessed via implementation into our probabilistic integration system to show how it can manage and resolve different cases of data conflicts and inconsistencies. The outcome showed improved accuracy in identifying true values due to the association of constructive evidence

    Information Extraction, Data Integration, and Uncertain Data Management: The State of The Art

    Get PDF
    Information Extraction, data Integration, and uncertain data management are different areas of research that got vast focus in the last two decades. Many researches tackled those areas of research individually. However, information extraction systems should have integrated with data integration methods to make use of the extracted information. Handling uncertainty in extraction and integration process is an important issue to enhance the quality of the data in such integrated systems. This article presents the state of the art of the mentioned areas of research and shows the common grounds and how to integrate information extraction and data integration under uncertainty management cover

    Fusing Data with Correlations

    Full text link
    Many applications rely on Web data and extraction systems to accomplish knowledge-driven tasks. Web information is not curated, so many sources provide inaccurate, or conflicting information. Moreover, extraction systems introduce additional noise to the data. We wish to automatically distinguish correct data and erroneous data for creating a cleaner set of integrated data. Previous work has shown that a na\"ive voting strategy that trusts data provided by the majority or at least a certain number of sources may not work well in the presence of copying between the sources. However, correlation between sources can be much broader than copying: sources may provide data from complementary domains (\emph{negative correlation}), extractors may focus on different types of information (\emph{negative correlation}), and extractors may apply common rules in extraction (\emph{positive correlation, without copying}). In this paper we present novel techniques modeling correlations between sources and applying it in truth finding.Comment: Sigmod'201
    • 

    corecore