14,587 research outputs found

    Configuration Controllability of Simple Mechanical Control Systems

    Get PDF
    In this paper we present a definition of "configuration controllability" for mechanical systems whose Lagrangian is kinetic energy with respect to a Riemannian metric minus potential energy. A computable test for this new version of controllability is derived. This condition involves an object which we call the symmetric product. Of particular interest is a definition of "equilibrium controllability" for which we are able to derive computable sufficient conditions. Examples illustrate the theory

    Configuration Controllability of Simple Mechanical Control Systems

    Get PDF
    In this paper we present a definition of 'configuration controllability' for mechanical systems whose Lagrangian is kinetic energy with respect to a Riemannian metric minus potential energy. A computable test for this new version of controllability is derived. This condition involves an object that we call the symmetric product. Of particular interest is a definition of 'equilibrium controllability' for which we are able to derive computable sufficient conditions. Examples illustrate the theory

    Configuration Controllability of Simple Mechanical Control Systems

    Get PDF
    In this paper we present a definition of "configuration controllability" for mechanical systems whose Lagrangian is kinetic energy with respect to a Riemannian metric minus potential energy. A computable test for this new version of controllability is also derived. This condition involves a new object which we call the {\em symmetric product}. Of particular interest is a definition of "equilibrium controllability" for which we are able to derive computable sufficient conditions. Examples illustrate the theory

    Configuration Controllability of Simple Mechanical Control Systems

    Full text link

    Controllability of kinematic control systems on stratified configuration spaces

    Get PDF
    This paper considers nonlinear kinematic controllability of a class of systems called stratified. Roughly speaking, such stratified systems have a configuration space which can be decomposed into submanifolds upon which the system has different sets of equations of motion. For such systems, considering controllability is difficult because of the discontinuous form of the equations of motion. The main result in this paper is a controllability test, analogous to Chow's theorem, is based upon a construction involving distributions, and the extension thereof to robotic gaits

    The power dissipation method and kinematic reducibility of multiple-model robotic systems

    Get PDF
    This paper develops a formal connection between the power dissipation method (PDM) and Lagrangian mechanics, with specific application to robotic systems. Such a connection is necessary for understanding how some of the successes in motion planning and stabilization for smooth kinematic robotic systems can be extended to systems with frictional interactions and overconstrained systems. We establish this connection using the idea of a multiple-model system, and then show that multiple-model systems arise naturally in a number of instances, including those arising in cases traditionally addressed using the PDM. We then give necessary and sufficient conditions for a dynamic multiple-model system to be reducible to a kinematic multiple-model system. We use this result to show that solutions to the PDM are actually kinematic reductions of solutions to the Euler-Lagrange equations. We are particularly motivated by mechanical systems undergoing multiple intermittent frictional contacts, such as distributed manipulators, overconstrained wheeled vehicles, and objects that are manipulated by grasping or pushing. Examples illustrate how these results can provide insight into the analysis and control of physical systems

    Dynamics and control of a class of underactuated mechanical systems

    Get PDF
    This paper presents a theoretical framework for the dynamics and control of underactuated mechanical systems, defined as systems with fewer inputs than degrees of freedom. Control system formulation of underactuated mechanical systems is addressed and a class of underactuated systems characterized by nonintegrable dynamics relations is identified. Controllability and stabilizability results are derived for this class of underactuated systems. Examples are included to illustrate the results; these examples are of underactuated mechanical systems that are not linearly controllable or smoothly stabilizable
    corecore