21 research outputs found

    Stable Electromyographic Sequence Prediction During Movement Transitions using Temporal Convolutional Networks

    Full text link
    Transient muscle movements influence the temporal structure of myoelectric signal patterns, often leading to unstable prediction behavior from movement-pattern classification methods. We show that temporal convolutional network sequential models leverage the myoelectric signal's history to discover contextual temporal features that aid in correctly predicting movement intentions, especially during interclass transitions. We demonstrate myoelectric classification using temporal convolutional networks to effect 3 simultaneous hand and wrist degrees-of-freedom in an experiment involving nine human-subjects. Temporal convolutional networks yield significant (p<0.001)(p<0.001) performance improvements over other state-of-the-art methods in terms of both classification accuracy and stability.Comment: 4 pages, 5 figures, accepted for Neural Engineering (NER) 2019 Conferenc

    Automatic misclassification rejection for LDA classifier using ROC curves

    Get PDF
    This paper presents a technique to improve the performance of an LDA classifier by determining if the predicted classification output is a misclassification and thereby rejecting it. This is achieved by automatically computing a class specific threshold with the help of ROC curves. If the posterior probability of a prediction is below the threshold, the classification result is discarded. This method of minimizing false positives is beneficial in the control of electromyography (EMG ) based upper-limb prosthetic devices. It is hypothesized that a unique EMG pattern is associated with a specific hand gesture. In reality, however, EMG signals are difficult to distinguish, particularly in the case of multiple finger motions, and hence classifiers are trained to recognize a set of individual gestures. However, it is imperative that misclassifications be avoided because they result in unwanted prosthetic arm motions which are detrimental to device controllability. This warrants the need for the proposed technique wherein a misclassified gesture prediction is rejected resulting in no motion of the prosthetic arm. The technique was tested using surface EMG data recorded from thirteen amputees performing seven hand gestures. Results show the number of misclassifications was effectively reduced, particularly in cases with low original classification accuracy

    Within-socket Myoelectric Prediction of Continuous Ankle Kinematics for Control of a Powered Transtibial Prosthesis

    Get PDF
    Objective. Powered robotic prostheses create a need for natural-feeling user interfaces and robust control schemes. Here, we examined the ability of a nonlinear autoregressive model to continuously map the kinematics of a transtibial prosthesis and electromyographic (EMG) activity recorded within socket to the future estimates of the prosthetic ankle angle in three transtibial amputees. Approach. Model performance was examined across subjects during level treadmill ambulation as a function of the size of the EMG sampling window and the temporal \u27prediction\u27 interval between the EMG/kinematic input and the model\u27s estimate of future ankle angle to characterize the trade-off between model error, sampling window and prediction interval. Main results. Across subjects, deviations in the estimated ankle angle from the actual movement were robust to variations in the EMG sampling window and increased systematically with prediction interval. For prediction intervals up to 150 ms, the average error in the model estimate of ankle angle across the gait cycle was less than 6°. EMG contributions to the model prediction varied across subjects but were consistently localized to the transitions to/from single to double limb support and captured variations from the typical ankle kinematics during level walking. Significance. The use of an autoregressive modeling approach to continuously predict joint kinematics using natural residual muscle activity provides opportunities for direct (transparent) control of a prosthetic joint by the user. The model\u27s predictive capability could prove particularly useful for overcoming delays in signal processing and actuation of the prosthesis, providing a more biomimetic ankle response

    Should Hands Be Restricted When Measuring Able-Bodied Participants To Evaluate Machine Learning Controlled Prosthetic Hands?

    Get PDF
    OBJECTIVE: When evaluating methods for machine-learning controlled prosthetic hands, able-bodied participants are often recruited, for practical reasons, instead of participants with upper limb absence (ULA). However, able-bodied participants have been shown to often perform myoelectric control tasks better than participants with ULA. It has been suggested that this performance difference can be reduced by restricting the wrist and hand movements of able-bodied participants. However, the effect of such restrictions on the consistency and separability of the electromyogram's (EMG) features remains unknown. The present work investigates whether the EMG separability and consistency between unaffected and affected arms differ and whether they change after restricting the unaffected limb in persons with ULA. METHODS: Both arms of participants with unilateral ULA were compared in two conditions: with the unaffected hand and wrist restricted or not. Furthermore, it was tested if the effect of arm and restriction is influenced by arm posture (arm down, arm in front, or arm up). RESULTS: Fourteen participants (two women, age=53.4±4.05) with acquired transradial limb loss were recruited. We found that the unaffected limb generated more separated EMG than the affected limb. Furthermore, restricting the unaffected hand and wrist lowered the separability of the EMG when the arm was held down. CONCLUSION: Limb restriction is a viable method to make the EMG of able-bodied participants more similar to that of participants with ULA. SIGNIFICANCE: Future research that evaluates methods for machine learning controlled hands in able-bodied participants should restrict the participants' hand and wrist

    A Transferable Adaptive Domain Adversarial Neural Network for Virtual Reality Augmented EMG-Based Gesture Recognition

    Get PDF
    Within the field of electromyography-based (EMG) gesture recognition, disparities exist between the offline accuracy reported in the literature and the real-time usability of a classifier. This gap mainly stems from two factors: 1) The absence of a controller, making the data collected dissimilar to actual control. 2) The difficulty of including the four main dynamic factors (gesture intensity, limb position, electrode shift, and transient changes in the signal), as including their permutations drastically increases the amount of data to be recorded. Contrarily, online datasets are limited to the exact EMG-based controller used to record them, necessitating the recording of a new dataset for each control method or variant to be tested. Consequently, this paper proposes a new type of dataset to serve as an intermediate between offline and online datasets, by recording the data using a real-time experimental protocol. The protocol, performed in virtual reality, includes the four main dynamic factors and uses an EMG-independent controller to guide movements. This EMG-independent feedback ensures that the user is in-the-loop during recording, while enabling the resulting dynamic dataset to be used as an EMG-based benchmark. The dataset is comprised of 20 able-bodied participants completing three to four sessions over a period of 14 to 21 days. The ability of the dynamic dataset to serve as a benchmark is leveraged to evaluate the impact of different recalibration techniques for long-term (across-day) gesture recognition, including a novel algorithm, named TADANN. TADANN consistently and significantly (p<0.05) outperforms using fine-tuning as the recalibration technique.Comment: 10 Pages. The last three authors shared senior authorshi

    A compact system for simultaneous stimulation and recording for closed-loop myoelectric control

    Get PDF
    Background.Despite important advancements in control and mechatronics of myoelectric prostheses, the communication between the user and his/her bionic limb is still unidirectional, as these systems do not provide somatosensory feedback. Electrotactile stimulation is an attractive technology to close the control loop since it allows flexible modulation of multiple parameters and compact interface design via multi-pad electrodes. However, the stimulation interferes with the recording of myoelectric signals and this can be detrimental to control.The work in this study was supported by the project ROBIN (8022-00243A and 8022-00226B) funded by the Independent Research Fund Denmark
    corecore