9 research outputs found

    Modeling Noise in Paraphrase Detection

    Get PDF
    Noisy labels in training data present a challenging issue in classification tasks, misleading a model towards incorrect decisions during training. In this paper, we propose the use of a linear noise model to augment pre-trained language models to account for label noise in fine-tuning. We test our approach in a paraphrase detection task with various levels of noise and five different languages. Our experiments demonstrate the effectiveness of the additional noise model in making the training procedures more robust and stable. Furthermore, we show that this model can be applied without further knowledge about annotation confidence and reliability of individual training examples and we analyse our results in light of data selection and sampling strategies.Peer reviewe

    Generating the Ground Truth: Synthetic Data for Label Noise Research

    Full text link
    Most real-world classification tasks suffer from label noise to some extent. Such noise in the data adversely affects the generalization error of learned models and complicates the evaluation of noise-handling methods, as their performance cannot be accurately measured without clean labels. In label noise research, typically either noisy or incomplex simulated data are accepted as a baseline, into which additional noise with known properties is injected. In this paper, we propose SYNLABEL, a framework that aims to improve upon the aforementioned methodologies. It allows for creating a noiseless dataset informed by real data, by either pre-specifying or learning a function and defining it as the ground truth function from which labels are generated. Furthermore, by resampling a number of values for selected features in the function domain, evaluating the function and aggregating the resulting labels, each data point can be assigned a soft label or label distribution. Such distributions allow for direct injection and quantification of label noise. The generated datasets serve as a clean baseline of adjustable complexity into which different types of noise may be introduced. We illustrate how the framework can be applied, how it enables quantification of label noise and how it improves over existing methodologies

    Instance-Dependent Noisy Label Learning via Graphical Modelling

    Full text link
    Noisy labels are unavoidable yet troublesome in the ecosystem of deep learning because models can easily overfit them. There are many types of label noise, such as symmetric, asymmetric and instance-dependent noise (IDN), with IDN being the only type that depends on image information. Such dependence on image information makes IDN a critical type of label noise to study, given that labelling mistakes are caused in large part by insufficient or ambiguous information about the visual classes present in images. Aiming to provide an effective technique to address IDN, we present a new graphical modelling approach called InstanceGM, that combines discriminative and generative models. The main contributions of InstanceGM are: i) the use of the continuous Bernoulli distribution to train the generative model, offering significant training advantages, and ii) the exploration of a state-of-the-art noisy-label discriminative classifier to generate clean labels from instance-dependent noisy-label samples. InstanceGM is competitive with current noisy-label learning approaches, particularly in IDN benchmarks using synthetic and real-world datasets, where our method shows better accuracy than the competitors in most experiments.Comment: Accepted at WACV 202

    Generating the Ground Truth: Synthetic Data for Label Noise Research

    Get PDF
    Most real-world classification tasks suffer from label noise to some extent. Such noise in the data adversely affects the generalization error of learned models and complicates the evaluation of noise-handling methods, as their performance cannot be accurately measured without clean labels. In label noise research, typically either noisy or incomplex simulated data are accepted as a baseline, into which additional noise with known properties is injected. In this paper, we propose SYNLABEL, a framework that aims to improve upon the aforementioned methodologies. It allows for creating a noiseless dataset informed by real data, by either pre-specifying or learning a function and defining it as the ground truth function from which labels are generated. Furthermore, by resampling a number of values for selected features in the function domain, evaluating the function and aggregating the resulting labels, each data point can be assigned a soft label or label distribution. Such distributions allow for direct injection and quantification of label noise. The generated datasets serve as a clean baseline of adjustable complexity into which different types of noise may be introduced. We illustrate how the framework can be applied, how it enables quantification of label noise and how it improves over existing methodologies

    Noise Models in Classification: Unified Nomenclature, Extended Taxonomy and Pragmatic Categorization

    Get PDF
    This paper presents the first review of noise models in classification covering both label and attribute noise. Their study reveals the lack of a unified nomenclature in this field. In order to address this problem, a tripartite nomenclature based on the structural analysis of existing noise models is proposed. Additionally, a revision of their current taxonomies is carried out, which are combined and updated to better reflect the nature of any model. Finally, a categorization of noise models is proposed from a practical point of view depending on the characteristics of noise and the study purpose. These contributions provide a variety of models to introduce noise, their characteristics according to the proposed taxonomy and a unified way of naming them, which will facilitate their identification and study, as well as the reproducibility of future research

    Learning with Noisy Labels by Efficient Transition Matrix Estimation to Combat Label Miscorrection

    Full text link
    Recent studies on learning with noisy labels have shown remarkable performance by exploiting a small clean dataset. In particular, model agnostic meta-learning-based label correction methods further improve performance by correcting noisy labels on the fly. However, there is no safeguard on the label miscorrection, resulting in unavoidable performance degradation. Moreover, every training step requires at least three back-propagations, significantly slowing down the training speed. To mitigate these issues, we propose a robust and efficient method that learns a label transition matrix on the fly. Employing the transition matrix makes the classifier skeptical about all the corrected samples, which alleviates the miscorrection issue. We also introduce a two-head architecture to efficiently estimate the label transition matrix every iteration within a single back-propagation, so that the estimated matrix closely follows the shifting noise distribution induced by label correction. Extensive experiments demonstrate that our approach shows the best performance in training efficiency while having comparable or better accuracy than existing methods.Comment: ECCV202
    corecore