16 research outputs found

    FCA2VEC: Embedding Techniques for Formal Concept Analysis

    Full text link
    Embedding large and high dimensional data into low dimensional vector spaces is a necessary task to computationally cope with contemporary data sets. Superseding latent semantic analysis recent approaches like word2vec or node2vec are well established tools in this realm. In the present paper we add to this line of research by introducing fca2vec, a family of embedding techniques for formal concept analysis (FCA). Our investigation contributes to two distinct lines of research. First, we enable the application of FCA notions to large data sets. In particular, we demonstrate how the cover relation of a concept lattice can be retrieved from a computational feasible embedding. Secondly, we show an enhancement for the classical node2vec approach in low dimension. For both directions the overall constraint of FCA of explainable results is preserved. We evaluate our novel procedures by computing fca2vec on different data sets like, wiki44 (a dense part of the Wikidata knowledge graph), the Mushroom data set and a publication network derived from the FCA community.Comment: 25 page

    Discovering Implicational Knowledge in Wikidata

    Full text link
    Knowledge graphs have recently become the state-of-the-art tool for representing the diverse and complex knowledge of the world. Examples include the proprietary knowledge graphs of companies such as Google, Facebook, IBM, or Microsoft, but also freely available ones such as YAGO, DBpedia, and Wikidata. A distinguishing feature of Wikidata is that the knowledge is collaboratively edited and curated. While this greatly enhances the scope of Wikidata, it also makes it impossible for a single individual to grasp complex connections between properties or understand the global impact of edits in the graph. We apply Formal Concept Analysis to efficiently identify comprehensible implications that are implicitly present in the data. Although the complex structure of data modelling in Wikidata is not amenable to a direct approach, we overcome this limitation by extracting contextual representations of parts of Wikidata in a systematic fashion. We demonstrate the practical feasibility of our approach through several experiments and show that the results may lead to the discovery of interesting implicational knowledge. Besides providing a method for obtaining large real-world data sets for FCA, we sketch potential applications in offering semantic assistance for editing and curating Wikidata

    Counting Proper Mergings of Chains and Antichains

    Full text link
    A proper merging of two disjoint quasi-ordered sets PP and QQ is a quasi-order on the union of PP and QQ such that the restriction to PP and QQ yields the original quasi-order again and such that no elements of PP and QQ are identified. In this article, we consider the cases where PP and QQ are chains, where PP and QQ are antichains, and where PP is an antichain and QQ is a chain. We give formulas that determine the number of proper mergings in all three cases, and introduce two new bijections from proper mergings of two chains to plane partitions and from proper mergings of an antichain and a chain to monotone colorings of complete bipartite digraphs. Additionally, we use these bijections to count the Galois connections between two chains, and between a chain and a Boolean lattice respectively.Comment: 36 pages, 15 figures, 5 table

    Scaling Dimension

    Full text link
    Conceptual Scaling is a useful standard tool in Formal Concept Analysis and beyond. Its mathematical theory, as elaborated in the last chapter of the FCA monograph, still has room for improvement. As it stands, even some of the basic definitions are in flux. Our contribution was triggered by the study of concept lattices for tree classifiers and the scaling methods used there. We extend some basic notions, give precise mathematical definitions for them and introduce the concept of scaling dimension. In addition to a detailed discussion of its properties, including an example, we show theoretical bounds related to the order dimension of concept lattices. We also study special subclasses, such as the ordinal and the interordinal scaling dimensions, and show for them first results and examples

    Formal Context Generation using Dirichlet Distributions

    Full text link
    We suggest an improved way to randomly generate formal contexts based on Dirichlet distributions. For this purpose we investigate the predominant way to generate formal contexts, a coin-tossing model, recapitulate some of its shortcomings and examine its stochastic model. Building up on this we propose our Dirichlet model and develop an algorithm employing this idea. By comparing our generation model to a coin-tossing model we show that our approach is a significant improvement with respect to the variety of contexts generated. Finally, we outline a possible application in null model generation for formal contexts.Comment: 16 pages, 7 figure

    Drawing Order Diagrams Through Two-Dimension Extension

    Full text link
    Order diagrams are an important tool to visualize the complex structure of ordered sets. Favorable drawings of order diagrams, i.e., easily readable for humans, are hard to come by, even for small ordered sets. Many attempts were made to transfer classical graph drawing approaches to order diagrams. Although these methods produce satisfying results for some ordered sets, they unfortunately perform poorly in general. In this work we present the novel algorithm DimDraw to draw order diagrams. This algorithm is based on a relation between the dimension of an ordered set and the bipartiteness of a corresponding graph.Comment: 16 pages, 12 Figure

    Proceedings of the International Workshop "What can FCA do for Artificial Intelligence?" (FCA4AI 2014)

    Get PDF
    International audienceThis is the third edition of the FCA4AI workshop, whose first edition was organized at ECAI 2012 Conference (Montpellier, August 2012) and second edition was organized at IJCAI 2013 Conference (Beijing, August 2013, see http://www.fca4ai.hse.ru/). Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data analysis and classification that can be used for many purposes, especially for Artificial Intelligence (AI) needs. The objective of the workshop is to investigate two main main issues: how can FCA support various AI activities (knowledge discovery, knowledge representation and reasoning, learning, data mining, NLP, information retrieval), and how can FCA be extended in order to help AI researchers to solve new and complex problems in their domain

    Towards Ordinal Data Science

    Get PDF
    Order is one of the main instruments to measure the relationship between objects in (empirical) data. However, compared to methods that use numerical properties of objects, the amount of ordinal methods developed is rather small. One reason for this is the limited availability of computational resources in the last century that would have been required for ordinal computations. Another reason - particularly important for this line of research - is that order-based methods are often seen as too mathematically rigorous for applying them to real-world data. In this paper, we will therefore discuss different means for measuring and ‘calculating’ with ordinal structures - a specific class of directed graphs - and show how to infer knowledge from them. Our aim is to establish Ordinal Data Science as a fundamentally new research agenda. Besides cross-fertilization with other cornerstone machine learning and knowledge representation methods, a broad range of disciplines will benefit from this endeavor, including, psychology, sociology, economics, web science, knowledge engineering, scientometrics
    corecore