522,781 research outputs found

    Thermal Conduction and Multiphase Gas in Cluster Cores

    Full text link
    We examine the role of thermal conduction and magnetic fields in cores of galaxy clusters through global simulations of the intracluster medium (ICM). In particular, we study the influence of thermal conduction, both isotropic and anisotropic, on the condensation of multiphase gas in cluster cores. Previous hydrodynamic simulations have shown that cold gas condenses out of the hot ICM in thermal balance only when the ratio of the cooling time (tcoolt_{\rm cool}) and the free-fall time (tfft_{\rm ff}) is less than 10\approx 10. Since thermal conduction is significant in the ICM and it suppresses local cooling at small scales, it is imperative to include thermal conduction in such studies. We find that anisotropic (along local magnetic field lines) thermal conduction does not influence the condensation criterion for a general magnetic geometry, even if thermal conductivity is large. However, with isotropic thermal conduction cold gas condenses only if conduction is suppressed (by a factor 0.3\lesssim 0.3) with respect to the Spitzer value.Comment: 7 pages, 4 figures; replaced by the MNRAS-accepted versio

    Entanglement of an impurity and conduction spins in the Kondo model

    Full text link
    Based on Yosida's ground state of the single-impurity Kondo Hamiltonian, we study three kinds of entanglement between an impurity and conduction electron spins. First, it is shown that the impurity spin is maximally entangled with all the conduction electrons. Second, a two-spin density matrix of the impurity spin and one conduction electron spin is given by a Werner state. We find that the impurity spin is not entangled with one conduction electron spin even within the Kondo screening length ξK\xi_K, although there is the spin-spin correlation between them. Third, we show the density matrix of two conduction electron spins is nearly same to that of a free electron gas. The single impurity does not change the entanglement structure of the conduction electrons in contrast to the dramatic change in electrical resistance.Comment: 5 pages, 2 figures, accepted for publication in Physical Review

    Quantum kk-core conduction on the Bethe lattice

    Full text link
    Classical and quantum conduction on a bond-diluted Bethe lattice is considered. The bond dilution is subject to the constraint that every occupied bond must have at least k1k-1 neighboring occupied bonds, i.e. kk-core diluted. In the classical case, we find the onset of conduction for k=2k=2 is continuous, while for k=3k=3, the onset of conduction is discontinuous with the geometric random first-order phase transition driving the conduction transition. In the quantum case, treating each occupied bond as a random scatterer, we find for k=3k=3 that the random first-order phase transition in the geometry also drives the onset of quantum conduction giving rise to a new universality class of Anderson localization transitions.Comment: 12 pgs., 6 fig

    Kondo Effect in a Metal with Correlated Conduction Electrons: Diagrammatic Approach

    Full text link
    We study the low-temperature behavior of a magnetic impurity which is weakly coupled to correlated conduction electrons. To account for conduction electron interactions a diagrammatic approach in the frame of the 1/N expansion is developed. The method allows us to study various consequences of the conduction electron correlations for the ground state and the low-energy excitations. We analyse the characteristic energy scale in the limit of weak conduction electron interactions. Results are reported for static properties (impurity valence, charge susceptibility, magnetic susceptibility, and specific heat) in the low-temperature limit.Comment: 16 pages, 9 figure
    corecore