2,186 research outputs found

    Crossmodal Attentive Skill Learner

    Full text link
    This paper presents the Crossmodal Attentive Skill Learner (CASL), integrated with the recently-introduced Asynchronous Advantage Option-Critic (A2OC) architecture [Harb et al., 2017] to enable hierarchical reinforcement learning across multiple sensory inputs. We provide concrete examples where the approach not only improves performance in a single task, but accelerates transfer to new tasks. We demonstrate the attention mechanism anticipates and identifies useful latent features, while filtering irrelevant sensor modalities during execution. We modify the Arcade Learning Environment [Bellemare et al., 2013] to support audio queries, and conduct evaluations of crossmodal learning in the Atari 2600 game Amidar. Finally, building on the recent work of Babaeizadeh et al. [2017], we open-source a fast hybrid CPU-GPU implementation of CASL.Comment: International Conference on Autonomous Agents and Multiagent Systems (AAMAS) 2018, NIPS 2017 Deep Reinforcement Learning Symposiu

    Factorized Inference in Deep Markov Models for Incomplete Multimodal Time Series

    Full text link
    Integrating deep learning with latent state space models has the potential to yield temporal models that are powerful, yet tractable and interpretable. Unfortunately, current models are not designed to handle missing data or multiple data modalities, which are both prevalent in real-world data. In this work, we introduce a factorized inference method for Multimodal Deep Markov Models (MDMMs), allowing us to filter and smooth in the presence of missing data, while also performing uncertainty-aware multimodal fusion. We derive this method by factorizing the posterior p(z|x) for non-linear state space models, and develop a variational backward-forward algorithm for inference. Because our method handles incompleteness over both time and modalities, it is capable of interpolation, extrapolation, conditional generation, label prediction, and weakly supervised learning of multimodal time series. We demonstrate these capabilities on both synthetic and real-world multimodal data under high levels of data deletion. Our method performs well even with more than 50% missing data, and outperforms existing deep approaches to inference in latent time series.Comment: 8 pages, 4 figures, accepted to AAAI 2020, code available at: https://github.com/ztangent/multimodal-dm

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Memory Fusion Network for Multi-view Sequential Learning

    Full text link
    Multi-view sequential learning is a fundamental problem in machine learning dealing with multi-view sequences. In a multi-view sequence, there exists two forms of interactions between different views: view-specific interactions and cross-view interactions. In this paper, we present a new neural architecture for multi-view sequential learning called the Memory Fusion Network (MFN) that explicitly accounts for both interactions in a neural architecture and continuously models them through time. The first component of the MFN is called the System of LSTMs, where view-specific interactions are learned in isolation through assigning an LSTM function to each view. The cross-view interactions are then identified using a special attention mechanism called the Delta-memory Attention Network (DMAN) and summarized through time with a Multi-view Gated Memory. Through extensive experimentation, MFN is compared to various proposed approaches for multi-view sequential learning on multiple publicly available benchmark datasets. MFN outperforms all the existing multi-view approaches. Furthermore, MFN outperforms all current state-of-the-art models, setting new state-of-the-art results for these multi-view datasets.Comment: AAAI 2018 Oral Presentatio
    corecore