12,321 research outputs found

    Regression Discontinuity Designs Using Covariates

    Full text link
    We study regression discontinuity designs when covariates are included in the estimation. We examine local polynomial estimators that include discrete or continuous covariates in an additive separable way, but without imposing any parametric restrictions on the underlying population regression functions. We recommend a covariate-adjustment approach that retains consistency under intuitive conditions, and characterize the potential for estimation and inference improvements. We also present new covariate-adjusted mean squared error expansions and robust bias-corrected inference procedures, with heteroskedasticity-consistent and cluster-robust standard errors. An empirical illustration and an extensive simulation study is presented. All methods are implemented in \texttt{R} and \texttt{Stata} software packages

    Bayesian regression discontinuity designs: Incorporating clinical knowledge in the causal analysis of primary care data

    Get PDF
    The regression discontinuity (RD) design is a quasi-experimental design that estimates the causal effects of a treatment by exploiting naturally occurring treatment rules. It can be applied in any context where a particular treatment or intervention is administered according to a pre-specified rule linked to a continuous variable. Such thresholds are common in primary care drug prescription where the RD design can be used to estimate the causal effect of medication in the general population. Such results can then be contrasted to those obtained from randomised controlled trials (RCTs) and inform prescription policy and guidelines based on a more realistic and less expensive context. In this paper we focus on statins, a class of cholesterol-lowering drugs, however, the methodology can be applied to many other drugs provided these are prescribed in accordance to pre-determined guidelines. NHS guidelines state that statins should be prescribed to patients with 10 year cardiovascular disease risk scores in excess of 20%. If we consider patients whose scores are close to this threshold we find that there is an element of random variation in both the risk score itself and its measurement. We can thus consider the threshold a randomising device assigning the prescription to units just above the threshold and withholds it from those just below. Thus we are effectively replicating the conditions of an RCT in the area around the threshold, removing or at least mitigating confounding. We frame the RD design in the language of conditional independence which clarifies the assumptions necessary to apply it to data, and which makes the links with instrumental variables clear. We also have context specific knowledge about the expected sizes of the effects of statin prescription and are thus able to incorporate this into Bayesian models by formulating informative priors on our causal parameters.Comment: 21 pages, 5 figures, 2 table

    Regression discontinuity design with covariates

    Get PDF
    In this paper, the regression discontinuity design (RDD) is generalized to account for differences in observed covariates X in a fully nonparametric way. It is shown that the treatment effect can be estimated at the rate for one-dimensional nonparametric regression irrespective of the dimension of X. It thus extends the analysis of Hahn, Todd and van der Klaauw (2001) and Porter (2003), who examined identification and estimation without covariates, requiring assumptions that may often be too strong in applications. In many applications, individuals to the left and right of the threshold differ in observed characteristics. Houses may be constructed in different ways across school attendance district boundaries. Firms may differ around a threshold that implies certain legal changes, etc. Accounting for these differences in covariates is important to reduce bias. In addition, accounting for covariates may also reduces variance. Finally, estimation of quantile treatment effects (QTE) is also considered.Treatment effect, causal effect, complier, LATE, nonparametric regression, endogeneity

    Regression discontinuity design with covariates

    Get PDF
    In this paper, the regression discontinuity design (RDD) is generalized to account for differences in observed covariates X in a fully nonparametric way. It is shown that the treatment effect can be estimated at the rate for one-dimensional nonparametric regression irrespective of the dimension of X. It thus extends the analysis of Hahn, Todd and van der Klaauw (2001) and Porter (2003), who examined identification and estimation without covariates, requiring assumptions that may often be too strong in applications. In many applications, individuals to the left and right of the threshold differ in observed characteristics. Houses may be Cconstructed in different ways across school attendance district boundaries. Firms may differ around a threshold that implies certain legal changes, etc. Accounting for these differences in covariates is important to reduce bias. In addition, accounting for covariates may also reduces variance. Finally, estimation of quantile treatment effects (QTE) is also considered.
    • …
    corecore