34,457 research outputs found

    Multi-Object Classification and Unsupervised Scene Understanding Using Deep Learning Features and Latent Tree Probabilistic Models

    Get PDF
    Deep learning has shown state-of-art classification performance on datasets such as ImageNet, which contain a single object in each image. However, multi-object classification is far more challenging. We present a unified framework which leverages the strengths of multiple machine learning methods, viz deep learning, probabilistic models and kernel methods to obtain state-of-art performance on Microsoft COCO, consisting of non-iconic images. We incorporate contextual information in natural images through a conditional latent tree probabilistic model (CLTM), where the object co-occurrences are conditioned on the extracted fc7 features from pre-trained Imagenet CNN as input. We learn the CLTM tree structure using conditional pairwise probabilities for object co-occurrences, estimated through kernel methods, and we learn its node and edge potentials by training a new 3-layer neural network, which takes fc7 features as input. Object classification is carried out via inference on the learnt conditional tree model, and we obtain significant gain in precision-recall and F-measures on MS-COCO, especially for difficult object categories. Moreover, the latent variables in the CLTM capture scene information: the images with top activations for a latent node have common themes such as being a grasslands or a food scene, and on on. In addition, we show that a simple k-means clustering of the inferred latent nodes alone significantly improves scene classification performance on the MIT-Indoor dataset, without the need for any retraining, and without using scene labels during training. Thus, we present a unified framework for multi-object classification and unsupervised scene understanding

    DeepOtsu: Document Enhancement and Binarization using Iterative Deep Learning

    Get PDF
    This paper presents a novel iterative deep learning framework and apply it for document enhancement and binarization. Unlike the traditional methods which predict the binary label of each pixel on the input image, we train the neural network to learn the degradations in document images and produce the uniform images of the degraded input images, which allows the network to refine the output iteratively. Two different iterative methods have been studied in this paper: recurrent refinement (RR) which uses the same trained neural network in each iteration for document enhancement and stacked refinement (SR) which uses a stack of different neural networks for iterative output refinement. Given the learned uniform and enhanced image, the binarization map can be easy to obtain by a global or local threshold. The experimental results on several public benchmark data sets show that our proposed methods provide a new clean version of the degraded image which is suitable for visualization and promising results of binarization using the global Otsu's threshold based on the enhanced images learned iteratively by the neural network.Comment: Accepted by Pattern Recognitio
    • …
    corecore