181 research outputs found

    Lunar Surface Systems Supportability Technology Development Roadmap

    Get PDF
    The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program

    Advanced Manned Launch System (AMLS) study

    Get PDF
    To assure national leadership in space operations and exploration in the future, NASA must be able to provide cost effective and operationally efficient space transportation. Several NASA studies and the joint NASA/DoD Space Transportation Architecture Studies (STAS) have shown the need for a multi-vehicle space transportation system with designs driven by enhanced operations and low costs. NASA is currently studying an advanced manned launch system (AMLS) approach to transport crew and cargo to the Space Station Freedom. Several single and multiple stage systems from air-breathing to all-rocket concepts are being examined in a series of studies potential replacements for the Space Shuttle launch system in the 2000-2010 time frame. Rockwell International Corporation, under contract to the NASA Langley Research Center, has analyzed a two-stage all-rocket concept to determine whether this class of vehicles is appropriate for the AMLS function. The results of the pre-phase A study are discussed

    A Collection of Technical Papers

    Get PDF
    Papers presented at the 6th Space Logistics Symposium covered such areas as: The International Space Station; The Hubble Space Telescope; Launch site computer simulation; Integrated logistics support; The Baikonur Cosmodrome; Probabalistic tools for high confidence repair; A simple space station rescue vehicle; Integrated Traffic Model for the International Space Station; Packaging the maintenance shop; Leading edge software support; Storage information management system; Consolidated maintenance inventory logistics planning; Operation concepts for a single stage to orbit vehicle; Mission architecture for human lunar exploration; Logistics of a lunar based solar power satellite scenario; Just in time in space; NASA acquisitions/logistics; Effective transition management; Shuttle logistics; and Revitalized space operations through total quality control management

    Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study, volume 2

    Get PDF
    The Liquid Rocket Booster (LRB) Systems Definition Handbook presents the analyses and design data developed during the study. The Systems Definition Handbook (SDH) contains three major parts: the LRB vehicles definition; the Pressure-Fed Booster Test Bed (PFBTB) study results; and the ALS/LRB study results. Included in this volume are the results of all trade studies; final configurations with supporting rationale and analyses; technology assessments; long lead requirements for facilities, materials, components, and subsystems; operational requirements and scenarios; and safety, reliability, and environmental analyses

    Space Transportation Materials and Structures Technology Workshop

    Get PDF
    The Space Transportation Materials and Structures Technology Workshop was held on September 23-26, 1991, in Newport News, Virginia. The workshop, sponsored by the NASA Office of Space Flight and the NASA Office of Aeronautics and Space Technology, was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems, Propulsion Systems, and Entry Systems

    Aeronautical engineering: A continuing bibliography with indexes (supplement 212)

    Get PDF
    This bibliography lists 493 reports, articles and other documents introduced into the NASA scientific and technical information system in March, 1987

    Aeronautical Engineering, A Continuing Bibliography With Indexes

    Get PDF
    This bibliography lists 693 reports, articles and other documents introduced into the NASA scientific and technical information system in September 1984

    Personnel Launch System (PLS) study

    Get PDF
    NASA is currently studying a personnel launch system (PLS) approach to help satisfy the crew rotation requirements for the Space Station Freedom. Several concepts from low L/D capsules to lifting body vehicles are being examined in a series of studies as a potential augmentation to the Space Shuttle launch system. Rockwell International Corporation, under contract to NASA, analyzed a lifting body concept to determine whether the lifting body class of vehicles is appropriate for the PLS function. The results of the study are given

    Microextrusion 3D Printing of Optical Waveguides and Microheaters

    Get PDF
    The drive for smaller and more compact devices presents several challenges in materials and fabrication strategies. Although photolithography is a well-developed method for creating microdevices, the disparate requirements in fabrication strategies, material choices, equipment and process complexities have limited its applications. Microextrusion printing (μEP) provides a promising alternative for microfabrication. Compared to the traditional techniques, the attractions lie in the wide range of printable material choice, greater design freedom, fewer processing steps, lower cost for customized production, and the plurality of compatible substrates. However, while extrusion-based 3D printing processes have been successfully applied at the macroscale, this seeming simplicity belies the dynamic complexities needed for consistent, repeatable, and cost-effective printing at the microscale. The fundamental understanding of the microextrusion printing process is still lacking. One primary goal of this dissertation, therefore, is to develop the fundamental understanding of μEP. This study elucidates the underlying principles of this printing technique, offering an overall roadmap - stepwise guide for successful printing based on both results in the literature and our experimental tests. The primary motivation is to provide users at both the research and industrial platforms with the requisite knowledge base needed for adapting μEP for microfabrication. Ultimately, this understanding, optimization of materials properties, and process parameters dictate the resolution and quality of the printed features. Following the improved understanding of microextrusion printing, two complementary goals were set. First, in order to test and validate the applicability the framework, a high-resolution microextrusion 3D printer was designed and implemented to enable high precision printing of microdevices and microstructures. Second, taking advantage of the guiding framework and printing platform, printing of novel materials and devices including flexible optics and a high-temperature microheater were explored and demonstrated. One common thread is observed throughout this work, that is, the development of the fundamental understanding of microextrusion 3D printing and its application for creating functional microdevices and structures. This work opens new possibilities and versatile approach for low-cost patterning of materials and functional devices
    corecore