49 research outputs found

    Revolutionizing physics: a comprehensive survey of machine learning applications

    Get PDF
    In the context of the 21st century and the fourth industrial revolution, the substantial proliferation of data has established it as a valuable resource, fostering enhanced computational capabilities across scientific disciplines, including physics. The integration of Machine Learning stands as a prominent solution to unravel the intricacies inherent to scientific data. While diverse machine learning algorithms find utility in various branches of physics, there exists a need for a systematic framework for the application of Machine Learning to the field. This review offers a comprehensive exploration of the fundamental principles and algorithms of Machine Learning, with a focus on their implementation within distinct domains of physics. The review delves into the contemporary trends of Machine Learning application in condensed matter physics, biophysics, astrophysics, material science, and addresses emerging challenges. The potential for Machine Learning to revolutionize the comprehension of intricate physical phenomena is underscored. Nevertheless, persisting challenges in the form of more efficient and precise algorithm development are acknowledged within this review

    Markovian embedding of fractional superdiffusion

    Full text link
    The Fractional Langevin Equation (FLE) describes a non-Markovian Generalized Brownian Motion with long time persistence (superdiffusion), or anti-persistence (subdiffusion) of both velocity-velocity correlations, and position increments. It presents a case of the Generalized Langevin Equation (GLE) with a singular power law memory kernel. We propose and numerically realize a numerically efficient and reliable Markovian embedding of this superdiffusive GLE, which accurately approximates the FLE over many, about r=N lg b-2, time decades, where N denotes the number of exponentials used to approximate the power law kernel, and b>1 is a scaling parameter for the hierarchy of relaxation constants leading to this power law. Besides its relation to the FLE, our approach presents an independent and very flexible route to model anomalous diffusion. Studying such a superdiffusion in tilted washboard potentials, we demonstrate the phenomenon of transient hyperdiffusion which emerges due to transient kinetic heating effects.Comment: EPL, in pres

    Knowledge Evolution in Physics Research: An Analysis of Bibliographic Coupling Networks

    Full text link
    Even as we advance the frontiers of physics knowledge, our understanding of how this knowledge evolves remains at the descriptive levels of Popper and Kuhn. Using the APS publications data sets, we ask in this letter how new knowledge is built upon old knowledge. We do so by constructing year-to-year bibliographic coupling networks, and identify in them validated communities that represent different research fields. We then visualize their evolutionary relationships in the form of alluvial diagrams, and show how they remain intact through APS journal splits. Quantitatively, we see that most fields undergo weak Popperian mixing, and it is rare for a field to remain isolated/undergo strong mixing. The sizes of fields obey a simple linear growth with recombination. We can also reliably predict the merging between two fields, but not for the considerably more complex splitting. Finally, we report a case study of two fields that underwent repeated merging and splitting around 1995, and how these Kuhnian events are correlated with breakthroughs on BEC, quantum teleportation, and slow light. This impact showed up quantitatively in the citations of the BEC field as a larger proportion of references from during and shortly after these events.Comment: 14 pages, 14 figures, 1 tabl

    Terwilliger in the department and university

    Full text link
    The contributions of Kent Terwilliger to the University of Michigan are recalled. As associate chair for research and facilities, Kent managed funding for research, oversaw the department shops as well as performing several other tasks.(AIP)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87540/2/217_1.pd

    Gap and out-gap breathers in a binary modulated discrete nonlinear Schr\"odinger model

    Full text link
    We consider a modulated discrete nonlinear Schr\"odinger (DNLS) model with alternating on-site potential, having a linear spectrum with two branches separated by a 'forbidden' gap. Nonlinear localized time-periodic solutions with frequencies in the gap and near the gap -- discrete gap and out-gap breathers (DGBs and DOGBs) -- are investigated. Their linear stability is studied varying the system parameters from the continuous to the anti-continuous limit, and different types of oscillatory and real instabilities are revealed. It is shown, that generally DGBs in infinite modulated DNLS chains with hard (soft) nonlinearity do not possess any oscillatory instabilities for breather frequencies in the lower (upper) half of the gap. Regimes of 'exchange of stability' between symmetric and antisymmetric DGBs are observed, where an increased breather mobility is expected. The transformation from DGBs to DOGBs when the breather frequency enters the linear spectrum is studied, and the general bifurcation picture for DOGBs with tails of different wave numbers is described. Close to the anti-continuous limit, the localized linear eigenmodes and their corresponding eigenfrequencies are calculated analytically for several gap/out-gap breather configurations, yielding explicit proof of their linear stability or instability close to this limit.Comment: 17 pages, 12 figures, submitted to Eur. Phys. J.

    Preface: Centennial Physics at Peking University

    Full text link

    The quest and hope of Majorana zero modes in topological superconductor for fault-tolerant quantum computing: an introductory overview

    Get PDF
    Ettore Majorana, in his short life, unintendedly has uncovered the most profound problem in quantum computation by his discovery of Majorana fermion, a particle which is its own anti-particle. Owing to its non-Abelian exchange statistics, Majorana fermions may act as a qubit for a universal quantum computer which is fault-tolerant. The existence of such particle is predicted in mid-gap states (zero modes) of a topological superconductor as bound states that have a highly entangled degenerate ground state. This introductory overview will focus on the simplest theoretical proposals of Majorana fermions for topological quantum computing in superconducting systems, emphasizing the quest from the scalability problem of quantum computer to its possible solution with topological quantum computer employing non-Abelian anyons on various platforms of certain Majorana fermion signature encountered.Comment: 18 pages, 3 figures, The 4th International Seminar on Metallurgy and Materials (ISMM) 2020 Indonesian Institute of Sciences; typos correcte

    Washington University Record, November 30, 2006

    Get PDF
    https://digitalcommons.wustl.edu/record/2091/thumbnail.jp
    corecore