340 research outputs found

    Stimulus and task-dependent gamma activity in monkey V1

    Get PDF
    The single unit doctrine proposes that each one of our percepts and sensations is represented by the activity of specialized high-level cells in the brain. A common criticism applied to this proposal is the one referred to as the "combinatorial problem". We are constantly confronted with unlimited combinations of elements and features, and yet we face no problem in recognizing patterns and objects present in visual scenes. Are there enough neurons in the brain to singly code for each one of our percepts? Or is it the case that perceptions are represented by the distributed activity of different neuronal ensembles? We lack a general theory capable of explaining how distributed information can be efficiently integrated into single percepts. The working hypothesis here is that distributed neuronal ensembles signal relations present in the stimulus by selectively synchronizing their spiking responses. Synchronization is generally associated with oscillatory activity in the brain. Gamma oscillations in particular have been linked to various integrative processes in the visual system. Studies in anesthetized animals have shown a conspicuous increase in power for the gamma frequency band (30 to 60 Hz) in response to visual stimuli. Recently, these observations have been extended to behavioral studies which addressed the role of gamma activity in cognitive processes demanding selective attention. The initial motivation for carrying out this work was to test if the binding-by-synchronization (BBS) hypothesis serves as a neuronal mechanism for perceptual grouping in the visual system. To this aim we used single and superimposed grating stimuli. Superimposed gratings (plaids) are bi-stable stimuli capable of eliciting different percepts depending on their physical characteristics. In this way, plaids can be perceived either as a single moving surface (pattern plaids), or as two segregated surfaces drifting in different directions (component plaids). While testing the BBS hypothesis, we performed various experiments which addressed the role of both stimulus and cortical architecture on the properties of gamma oscillations in the primary visual cortex (V1) of monkeys. Additionally, we investigated whether gamma activity could also be modulated by allocating attention in time. Finally, we report on gamma-phase shifts in area V1, and how they depend on the level of neuronal activation. ...Einleitung: Die visuelle Hirnforschung hat eine große Informationsmenge ĂŒber die analytischen FĂ€higkeiten des Nervensystems zusammengetragen. Die EinfĂŒhrung von Einzelzellableitungen ermöglichte eine detaillierte Beschreibung der Eigenschaften rezeptiver Felder im Sehsystem. Konzentrische rezeptive Felder in der Netzhaut antworten optimal auf einen Luminanzkontrast in ihren On- und Off-Regionen. Antworteigenschaften entwickeln sich schrittweise entlang der Sehbahn, indem zunehmend komplexere Eigenschaften des visuellen Reizes extrahiert werden. Die Pionierarbeiten von David Hubel und Torsten Wiesel beschrieben zunĂ€chst Orientierung- und RichtungsselektivitĂ€t von Neuronen in frĂŒhen visuellen Kortexarealen. SpĂ€ter fand man Einzelzellen im medialen Temporallappen, die auf komplexe Objekte wie HĂ€nde und Gesichter antworten. Die Hirnforschung ist daher lange davon ausgegangen, dass die ReprĂ€sentation komplexer Objekte eine natĂŒrliche Entfaltung von Konvergenz entlang der Sehbahn darstellt. Zellen, welche auf elementare Merkmale des Stimulus antworteten, bildeten so durch ihr Muster anatomischer Verbindungen schrittweise die spezialisierten Neurone in höheren visuellen Arealen. Diese Sichtweise zeigt allerdings Limitationen auf. Eine bestĂ€ndige Kritik, die an der "Einzelzelldoktrin" geĂŒbt wird, ist das sogenannte kombinatorische Problem. Obwohl wir stĂ€ndig mit einer unbegrenzten FĂŒlle an Kombinationen verschiedener Elemente und Merkmale konfrontiert sind, laufen wir selten Gefahr, Muster und Objekte in einer visuellen Szene nicht zu erkennen. Ist es ĂŒberhaupt möglich, dass jedes unserer möglichen Perzepte durch die Antwort eines einzelnen hoch spezialisierten Neurons im Hirn kodiert wird? Falls nicht, welcher Mechanismus könnte einen relationalen Code darstellen, der es ermöglicht, die AktivitĂ€t verschiedener neuronaler Ensembles zu integrieren? Die Anforderungen an einen solchen Mechanismus treten besonders hervor, wenn man sich die verteilte Struktur der visuellen Verarbeitung verdeutlicht. Die Merkmalsextraktion entlang der Sehbahn fĂŒhrt unvermeidbar zu einer rĂ€umlich verstreuten ReprĂ€sentation eines visuellen Reizes. ZusĂ€tzlich kommen parallele Bahnen neuronaler Verarbeitung im Hirn hĂ€ufig vor. Es fehlt eine universale Theorie darĂŒber, wie die verteilte Information effizient in eine einzige Wahrnehmung integriert wird. Die Arbeitshypothese hier lautet, dass das Hirn die ZeitdomĂ€ne benutzt, um visuelle Informationen zu integrieren und zu verarbeiten. Konkret wĂŒrden neuronale Ensemble die aus dem Stimulus hervorgehenden Beziehungen durch eine selektive Synchronisation ihrer Aktionspotenziale signalisieren. Synchronisation ist normalerweise mit oszillatorischer HirnaktivitĂ€t assoziiert. Besonders die Oszillationen im Gamma Frequenzband sind mit verschiedensten integrativen Prozessen im Sehsystem in Verbindung gebracht worden. Arbeiten an anĂ€sthesierten Tieren haben einen auffĂ€lligen Anstieg von Energie im Gamma Frequenzband (30-60 Hz) unter visueller Stimulation gezeigt. KĂŒrzlich sind diese Beobachtungen auf Verhaltensstudien ausgeweitet worden, welche die Rolle von Gamma AktivitĂ€t bei der fĂŒr kognitive Prozesse erforderlichen gerichteten Aufmerksamkeit untersuchen. Die ursprĂŒngliche Motivation dieser Arbeit war es, die von Wolf Singer und Mitarbeitern formulierte "binding-bysynchronization (BBS)" Hypothese zu testen. Dies wurde durch die Ableitung neuronaler Antworten in V1 bei Darbietung eines Paars ĂŒbereinander gelegter Balkengitter ("Plaid" Stimulus) angegangen. Physikalische Manipulationen der Luminanz in Unterregionen des Plaid-Stimulus können die Wahrnehmung zugunsten der Bewegung der Einzelkomponenten (zwei Objekte, die sich ĂŒbereinander schieben) oder der Bewegung des Gesamtmusters (ein einziges sich in eine gemeinsame Richtung bewegendes Objekt) beeinflussen. Die gleichzeitige Ableitung von zwei Neuronen, die jeweils nur selektiv auf eines der beiden Balkengitter antworteten, ermöglichte es uns, zwei Vorhersagen der BBS Hypothese zu testen. Falls beide V1 Neurone auf dasselbe Balkengitter antworteten, sollten sie ihre AktivitĂ€t unabhĂ€ngig davon, ob das Plaid in Einzelkomponenten oder als Gesamtmuster wahrgenommen wĂŒrde, synchronisieren. Der Grund dafĂŒr wĂ€re, dass beide Neurone auf dasselbe Objekt reagierten. Im zweiten Fall antworten beide Ableitstellen auf jeweils eine der beiden Balkengitterkomponenten. Hier sagt die BBS Hypothese voraus, dass beide ihre AktivitĂ€t nur bei Gesamtmusterbewegung synchronisieren wĂŒrden, da sie nur in dieser Bedingung auf dasselbe Objekt antworten wĂŒrden. ..

    GABAergic Activities Control Spike Timing- and Frequency-Dependent Long-Term Depression at Hippocampal Excitatory Synapses

    Get PDF
    GABAergic interneuronal network activities in the hippocampus control a variety of neural functions, including learning and memory, by regulating Ξ and Îł oscillations. How these GABAergic activities at pre- and postsynaptic sites of hippocampal CA1 pyramidal cells differentially contribute to synaptic function and plasticity during their repetitive pre- and postsynaptic spiking at Ξ and Îł oscillations is largely unknown. We show here that activities mediated by postsynaptic GABAARs and presynaptic GABABRs determine, respectively, the spike timing- and frequency-dependence of activity-induced synaptic modifications at Schaffer collateral-CA1 excitatory synapses. We demonstrate that both feedforward and feedback GABAAR-mediated inhibition in the postsynaptic cell controls the spike timing-dependent long-term depression of excitatory inputs (“e-LTD”) at the Ξ frequency. We also show that feedback postsynaptic inhibition specifically causes e-LTD of inputs that induce small postsynaptic currents (<70 pA) with LTP-timing, thus enforcing the requirement of cooperativity for induction of long-term potentiation at excitatory inputs (“e-LTP”). Furthermore, under spike-timing protocols that induce e-LTP and e-LTD at excitatory synapses, we observed parallel induction of LTP and LTD at inhibitory inputs (“i-LTP” and “i-LTD”) to the same postsynaptic cells. Finally, we show that presynaptic GABABR-mediated inhibition plays a major role in the induction of frequency-dependent e-LTD at α and ÎČ frequencies. These observations demonstrate the critical influence of GABAergic interneuronal network activities in regulating the spike timing- and frequency-dependences of long-term synaptic modifications in the hippocampus

    Genetics and Function of Neocortical GABAergic Interneurons in Neurodevelopmental Disorders

    Get PDF
    A dysfunction of cortical and limbic GABAergic circuits has been postulated to contribute to multiple neurodevelopmental disorders in humans, including schizophrenia, autism, and epilepsy. In the current paper, I summarize the characteristics that underlie the great diversity of cortical GABAergic interneurons and explore how the multiple roles of these cells in developing and mature circuits might contribute to the aforementioned disorders. Furthermore, I review the tightly controlled genetic cascades that determine the fate of cortical interneurons and summarize how the dysfunction of genes important for the generation, specification, maturation, and function of cortical interneurons might contribute to these disorders

    Assessing Neuronal Synchrony and Brain Function Through Local Field Potential and Spike Analysis

    Get PDF
    Studies of neuronal network oscillations and rhythmic neuronal synchronization have led to a number of important insights in recent years, giving us a better understanding of the temporal organization of neuronal activity related to essential brain functions like sensory processing and cognition. Important principles and theories have emerged from these findings, including the communication through coherence hypothesis, which proposes that synchronous oscillations render neuronal communication effective, selective, and precise. The implications of such a theory may be universal for brain function, as the determinants of neuronal communication inextricably shape the neuronal representation of information in the brain. However, the study of communication through coherence is still relatively young. Since its articulation in 2005, the theory has predominantly been applied to assess cortical function and its communication with downstream targets in different sensory and behavioral conditions. The results herein are intended to bolster this hypothesis and explore new ways in which oscillations coordinate neuronal communication in distributed regions. This includes the development of new analytic tools for interpreting electrophysiological patterns, inspired by phase synchronization and spike train analysis. These tools aim to offer fast results with clear statistical and physiological interpretation

    Slow Inhibition and Inhibitory Recruitment in the Hippocampal Dentate Gyrus

    Get PDF
    L’hippocampe joue un rĂŽle central dans la navigation spatiale, la mĂ©moire et l’organisation spatio-temporelle des souvenirs. Ces fonctions sont maintenues par la capacitĂ© du gyrus dentĂ© (GD) de sĂ©paration des patrons d'activitĂ© neuronales. Le GD est situĂ© Ă  l’entrĂ©e de la formation hippocampique oĂč il reconnaĂźt la prĂ©sence de nouveaux motifs parmi la densitĂ© de signaux affĂ©rant arrivant par la voie entorhinale (voie perforante). Le codage parcimonieux est la marque distinctive du GD. Ce type de codage est le rĂ©sultat de la faible excitabilitĂ© intrinsĂšque des cellules granulaires (CGs) en combinaison avec une inhibition locale prĂ©dominante. En particulier, l’inhibition de type « feedforward » ou circuit inhibiteur antĂ©rograde, est engagĂ©e par la voie perforante en mĂȘme temps que les CGs. Ainsi les interneurones du circuit antĂ©rograde fournissent des signaux GABAergique aux CGs de maniĂšre presque simultanĂ©e qu’elles reçoivent les signaux glutamatergiques. Cette thĂšse est centrĂ©e sur l’étude des interactions entre ces signaux excitateurs de la voie entorhinale et les signaux inhibiteurs provenant des interneurones rĂ©sidant dans le GD et ceci dans le contexte du codage parcimonieux et le patron de dĂ©charge en rafale caractĂ©ristique des cellules granulaires. Nous avons adressĂ© les relations entre les projections entorhinales et le rĂ©seau inhibitoire antĂ©rograde du GD en faisant des enregistrements Ă©lectrophysiologiques des CG pendant que la voie perforante est stimulĂ©e de maniĂšre Ă©lectrique ou optogĂ©nĂ©tique. Nous avons dĂ©couvert un nouvel mĂ©canisme d’inhibition qui apparait Ă  dĂ©lais dans les CGs suite Ă  une stimulation dans les frĂ©quences gamma. Ce mĂ©canisme induit une hyperpolarisation de longue durĂ©e (HLD) et d’une amplitude prononce. Cette longue hyperpolarisation est particuliĂšrement prolongĂ©e et dĂ©passe la durĂ©e d’autres types d’inhibition transitoire lente dĂ©crits chez les CGs. L’induction de HLD crĂ©e une fenĂȘtre temporaire de faible excitabilitĂ© suite Ă  laquelle le patron de dĂ©charge des CGs et l’intĂ©gration d’autres signaux excitateurs sont altĂ©rĂ©s de maniĂšre transitoire. Nous avons donc conclu que l’activitĂ© inhibitrice antĂ©rograde joue un rĂŽle central dans les processus de codage dans le GD. Cependant, alors qu’il existe une multitude d’études dĂ©crivant les interneurones qui font partie de ce circuit inhibiteur, la question de comment ces cellules sont recrutĂ©es par la voie entorhinale reste quelque peu explorĂ©e. Pour apprendre plus Ă  ce sujet, nous avons enregistrĂ© des interneurones rĂ©sidant iii dans la couche molĂ©culaire du GD tout en stimulant la voie perforante de maniĂšre optogĂ©nĂ©tique. Cette mĂ©thode de stimulation nous a permis d’induire la libĂ©ration de glutamate endogĂšne des terminales entorhinales et ainsi d’observer le recrutement purement synaptique d’interneurones. De maniĂšre surprenante, les rĂ©sultats de cette expĂ©rience dĂ©montrent un faible taux d’activation des interneurones, accompagnĂ© d’un tout aussi faible nombre total de potentiels d’action Ă©mis en rĂ©ponse Ă  la stimulation mĂȘme Ă  haute frĂ©quence. Ce constat semble contre-intuitif Ă©tant donnĂ© qu’en gĂ©nĂ©rale on assume qu’une forte activitĂ© inhibitrice est requise pour le maintien du codage parcimonieux. Tout de mĂȘme, l’analyse des patrons de dĂ©charge des interneurones qui ont Ă©tĂ© activĂ©s a fait ressortir la prĂ©Ă©minence de trois grands types: dĂ©charge prĂ©coce, retardĂ©e ou rĂ©guliĂšre par rapport le dĂ©but des pulses lumineux. Les rĂ©sultats obtenus durant cette thĂšse mettent la lumiĂšre sur l’important consĂ©quences fonctionnelles des interactions synaptique et polysynaptique de nature transitoire dans les rĂ©seaux neuronaux. Nous aimerions aussi souligner l’effet prononcĂ© de l’inhibition Ă  court terme du type prolongĂ©e sur l’excitabilitĂ© des neurones et leurs capacitĂ©s d’émettre des potentiels d’action. De plus que cet effet est encore plus prononcĂ© dans le cas de HLD dont la durĂ©e dĂ©passe souvent la seconde et altĂšre l’intĂ©gration d’autres signaux arrivants simultanĂ©ment. Donc on croit que les effets de HLD se traduisent au niveau du rĂ©seaux neuronal du GD comme une composante cruciale pour le codage parcimonieux. En effet, ce type de codage semble ĂȘtre la marque distinctive de cette rĂ©gion Ă©tant donnĂ© que nous avons aussi observĂ© un faible niveau d’activation chez les interneurones. Cependant, le manque d’activitĂ© accrue du rĂ©seau inhibiteur antĂ©rograde peut ĂȘtre compensĂ© par le maintien d’un gradient GABAergique constant Ă  travers le GD via l’alternance des trois modes de dĂ©charges des interneurones. En conclusion, il semble que le codage parcimonieux dans le GD peut ĂȘtre prĂ©servĂ© mĂȘme en absence d’activitĂ© soutenue du rĂ©seau inhibiteur antĂ©rograde et ceci grĂące Ă  des mĂ©canismes alternatives d’inhibition prolongĂ©e Ă  court terme.The hippocampus is implicated in spatial navigation, the generation and recall of memories, as well as their spatio-temporal organization. These functions are supported by the processes of pattern separation that occurs in the dentate gyrus (DG). Situated at the entry of the hippocampal formation, the DG is well placed to detect and sort novelty patterns amongst the high-density excitatory signals that arrive via the entorhinal cortex (EC). A hallmark of the DG is sparse encoding that is enabled by a combination of low intrinsic excitability of the principal cells and local inhibition. Feedforward inhibition (FFI) is recruited directly by the EC and simultaneously with the granule cells (GCs). Therefore, FFI provides fast GABA release and shapes input integration at the millisecond time scale. This thesis aimed to investigate the interplay of entorhinal excitatory signals with GCs and interneurons, from the FFI in the DG, in the framework of sparse encoding and GC’s characteristic burst firing. We addressed the long-range excitation – local inhibitory network interactions using electrophysiological recordings of GCs – while applying an electrical or optogenetic stimulation of the perforant path (PP) in the DG. We discovered and described a novel delayed-onset inhibitory post synaptic potential (IPSP) in GCs, following PP stimulation in the gamma frequency range. Most importantly, the IPSP was characterized by a large amplitude and prolonged decay, outlasting previously described slow inhibitory events in GCs. The long-lasting hyperpolarization (LLH) caused by the slow IPSPs generates a low excitability time window, alters the GCs firing pattern, and interferes with other stimuli that arrive simultaneously. FFI is therefore a key player in the computational processes that occurs in the DG. However, while many studies have been dedicated to the description of the various types of the interneurons from the FFI, the question of how these cells are synaptically recruited by the EC remains not entirely elucidated. We tackled this problem by recording from interneurons in the DG molecular layer during PP-specific optogenetic stimulation. Light-driven activation of the EC terminals enabled a purely synaptic recruitment of interneurons via endogenous glutamate release. We found that this method of stimulation recruits only a subset of interneurons. In addition, the total number of action potentials (AP) was surprisingly low even at high frequency stimulation. This result is counterintuitive, as strong and persistent inhibitory signals are assumed to restrict GC v activation and maintain sparseness. However, amongst the early firing interneurons, late and regular spiking patterns were clearly distinguishable. Interestingly, some interneurons expressed LLH similar to the GCs, arguing that it could be a commonly used mechanism for regulation of excitability across the hippocampal network. In summary, we show that slow inhibition can result in a prolonged hyperpolarization that significantly alters concurrent input’s integration. We believe that these interactions contribute to important computational processes such as sparse encoding. Interestingly, sparseness seems to be the hallmark of the DG, as we observed a rather low activation of the interneuron network as well. However, the alternating firing of ML-INs could compensate the lack of persistent activity by the continuous GABA release across the DG. Taken together these results offer an insight into a mechanism of feedforward inhibition serving as a sparse neural code generator in the DG

    Development and Localization of Spike-Wave Seizures in Animal Models

    Get PDF
    Animal models allow for detailed investigation of neuronal function, particularly invasive localization and developmental studies not possible in humans. This thesis will review the technical challenges of simultaneous EEG-fMRI, and epileptogenesis studies in animal models, including issues related to anesthesia, movement, signal artifact, physiology, electrode compatibility, data acquisition, and data analysis, and review recent findings from simultaneous EEG-fMRI studies in epilepsy and other fields. Original research will be presented on the localization of neuronal networks involved during spike-and-wave seizures in the WAG/Rij rat, a model of human absence epilepsy. Simultaneous EEG-fMRI at 9 Tesla, complimented by parallel electrophysiology, including Multiple Unit Activity (MUA), Local Field Potential (LFP), and Cerebral Blood Flow (CBF) measurements were employed to investigate the functioning of neuronal networks. This work indicates that while BOLD signal increases in the Somaotsensory Cortex and Thalamus during SWD are associated with MUA, LFP, and CBF increases, BOLD signal decreases in the Caudate are associated with CBF decreases and relatively larger increase in LFP and smaller increase in MUA. Complimenting the localization studies, original research will also be presented on the development of spike-and-wave epilepsy in the C3H/Hej mouse, a model which will allow for more advanced genetic and molecular investigation. This work shows seizure development progressing though immature, transitional, and mature stages

    Neural Network Activity during Visuomotor Adaptation

    Get PDF

    The What and Why of Binding: The Modeler's Perspective

    Get PDF
    In attempts to formulate a computational understanding of brain function, one of the fundamental concerns is the data structure by which the brain represents information. For many decades, a conceptual framework has dominated the thinking of both brain modelers and neurobiologists. That framework is referred to here as "classical neural networks." It is well supported by experimental data, although it may be incomplete. A characterization of this framework will be offered in the next section. Difficulties in modeling important functional aspects of the brain on the basis of classical neural networks alone have led to the recognition that another, general mechanism must be invoked to explain brain function. That mechanism I call "binding." Binding by neural signal synchrony had been mentioned several times in the liter ature (LegeÂŽndy, 1970; Milner, 1974) before it was fully formulated as a general phenomenon (von der Malsburg, 1981). Although experimental evidence for neural syn chrony was soon found, the idea was largely ignored for many years. Only recently has it become a topic of animated discussion. In what follows, I will summarize the nature and the roots of the idea of binding, especially of temporal binding, and will discuss some of the objec tions raised against it
    • 

    corecore