3 research outputs found

    Unruptured brain arteriovenous malformations : primary ONYX embolization in ARUBA (A Randomized Trial of Unruptured Brain Arteriovenous Malformations)-eligible patients

    Get PDF
    Background and Purpose: In light of evidence from ARUBA (A Randomized Trial of Unruptured Brain Arteriovenous Malformations), neurovascular specialists had to reconsider deliberate treatment of unruptured brain arteriovenous malformations (uBAVMs). Our objective was to determine the outcomes of uBAVM treated with primary embolization using ethylene vinyl alcohol (ONYX). Methods: Patients with uBAVM who met the inclusion criteria of ARUBA and were treated with primary Onyx embolization were assigned to this retrospective study. The primary outcome was the modified Rankin Scale score. Secondary outcomes were stroke or death because of uBAVM or intervention and uBAVM obliteration. Results: Sixty-one patients (mean age, 38 years) were included. The median observation period was 60 months. Patients were treated by embolization alone (41.0%), embolization and radiosurgery (57.4%), or embolization and excision (1.6%). Occlusion was achieved in 44 of 57 patients with completed treatment (77.2%). Forty-seven patients (77.1%) had no clinical impairment at the end of observation (modified Rankin Scale score of <2). Twelve patients (19.7%) reached the outcome of stroke or death because of uBAVM or intervention. Treatment-related mortality was 6.6% (4 patients). Conclusions: In uBAVM, Onyx embolization alone or combined with stereotactic radiosurgery achieves a high occlusion rate. Morbidity remains a challenge, even if it seems lower than in the ARUBA trial

    Forest genomics and biotechnology

    Get PDF
    This Research Topic addresses research in genomics and biotechnology to improve the growth and quality of forest trees for wood, pulp, biorefineries and carbon capture. Forests are the world’s greatest repository of terrestrial biomass and biodiversity. Forests serve critical ecological services, supporting the preservation of fauna and flora, and water resources. Planted forests also offer a renewable source of timber, for pulp and paper production, and the biorefinery. Despite their fundamental role for society, thousands of hectares of forests are lost annually due to deforestation, pests and pathogens and urban development. As a consequence, there is an increasing need to develop trees that are more productive under lower inputs, while understanding how they adapt to the environment and respond to biotic and abiotic stress. Forest genomics and biotechnology, disciplines that study the genetic composition of trees and the methods required to modify them, began over a quarter of a century ago with the development of the first genetic maps and establishment of early methods of genetic transformation. Since then, genomics and biotechnology have impacted all research areas of forestry. Genome analyses of tree populations have uncovered genes involved in adaptation and response to biotic and abiotic stress. Genes that regulate growth and development have been identified, and in many cases their mechanisms of action have been described. Genetic transformation is now widely used to understand the roles of genes and to develop germplasm that is more suitable for commercial tree plantations. However, in contrast to many annual crops that have benefited from centuries of domestication and extensive genomic and biotechnology research, in forestry the field is still in its infancy. Thus, tremendous opportunities remain unexplored. This Research Topic aims to briefly summarize recent findings, to discuss long-term goals and to think ahead about future developments and how this can be applied to improve growth and quality of forest trees. Mini-review articles are sought in forest genomics and biotechnology, with a focus on future directions applied to (1) genetic engineering, (2) adaptation, (3) genomics of conifers and hardwoods, (4) cell wall and wood formation, (5) development (6) metabolic engineering (7) biotic and abiotic resistance and (8) the biorefinery
    corecore