3,302 research outputs found

    Dual quantum-correlation paradigms exhibit opposite statistical-mechanical properties

    Full text link
    We report opposite statistical mechanical behaviors of the two major paradigms in which quantum correlation measures are defined, viz., the entanglement-separability paradigm and the information-theoretic one. We show this by considering the ergodic properties of such quantum correlation measures in transverse quantum XY spin-1/2 systems in low dimensions. While entanglement measures are ergodic in such models, the quantum correlation measures defined from an information-theoretic perspective can be nonergodic.Comment: 8 pages, 5 figures, REVTeX 4.1; v2: published version, 9 page

    Scaling of Entanglement close to a Quantum Phase Transitions

    Full text link
    In this Letter we discuss the entanglement near a quantum phase transition by analyzing the properties of the concurrence for a class of exactly solvable models in one dimension. We find that entanglement can be classified in the framework of scaling theory. Further, we reveal a profound difference between classical correlations and the non-local quantum correlation, entanglement: the correlation length diverges at the phase transition, whereas entanglement in general remains short ranged.Comment: 4 pages, 4 figures, revtex. Stylistic changes and format modifie

    Entanglement and magnetic order

    Full text link
    In recent years quantum statistical mechanics have benefited of cultural interchanges with quantum information science. There is a bulk of evidence that quantifying the entanglement allows a fine analysis of many relevant properties of many-body quantum systems. Here we review the relation between entanglement and the various type of magnetic order occurring in interacting spin systems.Comment: 29 pages, 10 eps figures. Review article for the special issue "Entanglement entropy in extended systems" in J. Phys. A, edited by P. Calabrese, J. Cardy and B. Doyo

    Measures and dynamics of entangled states

    Full text link
    We develop an original approach for the quantitative characterisation of the entanglement properties of, possibly mixed, bi- and multipartite quantum states of arbitrary finite dimension. Particular emphasis is given to the derivation of reliable estimates which allow for an efficient evaluation of a specific entanglement measure, concurrence, for further implementation in the monitoring of the time evolution of multipartite entanglement under incoherent environment coupling. The flexibility of the technical machinery established here is illustrated by its implementation for different, realistic experimental scenarios.Comment: Physics Reports, in pres

    Higher order nonclassicalities of finite dimensional coherent states: A comparative study

    Full text link
    Conventional coherent states (CSs) are defined in various ways. For example, CS is defined as an infinite Poissonian expansion in Fock states, as displaced vacuum state, or as an eigenket of annihilation operator. In the infinite dimensional Hilbert space, these definitions are equivalent. However, these definitions are not equivalent for the finite dimensional systems. In this work, we present a comparative description of the lower- and higher-order nonclassical properties of the finite dimensional CSs which are also referred to as qudit CSs (QCSs). For the comparison, nonclassical properties of two types of QCSs are used: (i) nonlinear QCS produced by applying a truncated displacement operator on the vacuum and (ii) linear QCS produced by the Poissonian expansion in Fock states of the CS truncated at (d-1)-photon Fock state. The comparison is performed using a set of nonclassicality witnesses (e.g., higher order antiubunching, higher order sub-Poissonian statistics, higher order squeezing, Agarwal-Tara parameter, Klyshko's criterion) and a set of quantitative measures of nonclassicality (e.g., negativity potential, concurrence potential and anticlassicality). The higher order nonclassicality witness have found to reveal the existence of higher order nonclassical properties of QCS for the first time.Comment: A comparative description of the higher-order nonclassical properties of the finite dimensional coherent state
    • …
    corecore