6 research outputs found

    Generating all permutations by context-free grammars in Chomsky normal form

    Get PDF
    Let Ln be the finite language of all n! strings that are permutations of n different symbols (n1). We consider context-free grammars Gn in Chomsky normal form that generate Ln. In particular we study a few families {Gn}n1, satisfying L(Gn)=Ln for n1, with respect to their descriptional complexity, i.e. we determine the number of nonterminal symbols and the number of production rules of Gn as functions of n

    Generating All Permutations by Context-Free Grammars in Greibach Normal Form

    Get PDF
    We consider context-free grammars GnG_n in Greibach normal form and, particularly, in Greibach mm-form (m=1,2m=1,2) which generates the finite language LnL_n of all n!n! strings that are permutations of nn different symbols (nā‰„1n\geq 1). These grammars are investigated with respect to their descriptional complexity, i.e., we determine the number of nonterminal symbols and the number of production rules of GnG_n as functions of nn. As in the case of Chomsky normal form these descriptional complexity measures grow faster than any polynomial function

    On the Complexity of the Smallest Grammar Problem over Fixed Alphabets

    Get PDF
    In the smallest grammar problem, we are given a word w and we want to compute a preferably small context-free grammar G for the singleton language {w} (where the size of a grammar is the sum of the sizes of its rules, and the size of a rule is measured by the length of its right side). It is known that, for unbounded alphabets, the decision variant of this problem is NP-hard and the optimisation variant does not allow a polynomial-time approximation scheme, unless P = NP. We settle the long-standing open problem whether these hardness results also hold for the more realistic case of a constant-size alphabet. More precisely, it is shown that the smallest grammar problem remains NP-complete (and its optimisation version is APX-hard), even if the alphabet is fixed and has size of at least 17. The corresponding reduction is robust in the sense that it also works for an alternative size-measure of grammars that is commonly used in the literature (i. e., a size measure also taking the number of rules into account), and it also allows to conclude that even computing the number of rules required by a smallest grammar is a hard problem. On the other hand, if the number of nonterminals (or, equivalently, the number of rules) is bounded by a constant, then the smallest grammar problem can be solved in polynomial time, which is shown by encoding it as a problem on graphs with interval structure. However, treating the number of rules as a parameter (in terms of parameterised complexity) yields W[1]-hardness. Furthermore, we present an O(3āˆ£wāˆ£) exact exponential-time algorithm, based on dynamic programming. These three main questions are also investigated for 1-level grammars, i. e., grammars for which only the start rule contains nonterminals on the right side; thus, investigating the impact of the ā€œhierarchical depthā€ of grammars on the complexity of the smallest grammar problem. In this regard, we obtain for 1-level grammars similar, but slightly stronger results.Peer Reviewe
    corecore