17,848 research outputs found

    Concept drift detection based on anomaly analysis

    Full text link
    © Springer International Publishing Switzerland 2014. In online machine learning, the ability to adapt to new concept quickly is highly desired. In this paper, we propose a novel concept drift detection method, which is called Anomaly Analysis Drift Detection (AADD), to improve the performance of machine learning algorithms under non-stationary environment. The proposed AADD method is based on an anomaly analysis of learner’s accuracy associate with the similarity between learners’ training domain and test data. This method first identifies whether there are conflicts between current concept and new coming data. Then the learner will incrementally learn the non conflict data, which will not decrease the accuracy of the learner on previous trained data, for concept extension. Otherwise, a new learner will be created based on the new data. Experiments illustrate that this AADD method can detect new concept quickly and learn extensional drift incrementally

    Autoencoder-based Anomaly Detection in Streaming Data with Incremental Learning and Concept Drift Adaptation

    Full text link
    In our digital universe nowadays, enormous amount of data are produced in a streaming manner in a variety of application areas. These data are often unlabelled. In this case, identifying infrequent events, such as anomalies, poses a great challenge. This problem becomes even more difficult in non-stationary environments, which can cause deterioration of the predictive performance of a model. To address the above challenges, the paper proposes an autoencoder-based incremental learning method with drift detection (strAEm++DD). Our proposed method strAEm++DD leverages on the advantages of both incremental learning and drift detection. We conduct an experimental study using real-world and synthetic datasets with severe or extreme class imbalance, and provide an empirical analysis of strAEm++DD. We further conduct a comparative study, showing that the proposed method significantly outperforms existing baseline and advanced methods.Comment: anomaly detection, concept drift, incremental anomaly detection, concept drift, incremental learning, autoencoders, data streams, class imbalance, nonstationary environment

    Detecting Irregular Patterns in IoT Streaming Data for Fall Detection

    Full text link
    Detecting patterns in real time streaming data has been an interesting and challenging data analytics problem. With the proliferation of a variety of sensor devices, real-time analytics of data from the Internet of Things (IoT) to learn regular and irregular patterns has become an important machine learning problem to enable predictive analytics for automated notification and decision support. In this work, we address the problem of learning an irregular human activity pattern, fall, from streaming IoT data from wearable sensors. We present a deep neural network model for detecting fall based on accelerometer data giving 98.75 percent accuracy using an online physical activity monitoring dataset called "MobiAct", which was published by Vavoulas et al. The initial model was developed using IBM Watson studio and then later transferred and deployed on IBM Cloud with the streaming analytics service supported by IBM Streams for monitoring real-time IoT data. We also present the systems architecture of the real-time fall detection framework that we intend to use with mbientlabs wearable health monitoring sensors for real time patient monitoring at retirement homes or rehabilitation clinics.Comment: 7 page

    End-to-end anomaly detection in stream data

    Get PDF
    Nowadays, huge volumes of data are generated with increasing velocity through various systems, applications, and activities. This increases the demand for stream and time series analysis to react to changing conditions in real-time for enhanced efficiency and quality of service delivery as well as upgraded safety and security in private and public sectors. Despite its very rich history, time series anomaly detection is still one of the vital topics in machine learning research and is receiving increasing attention. Identifying hidden patterns and selecting an appropriate model that fits the observed data well and also carries over to unobserved data is not a trivial task. Due to the increasing diversity of data sources and associated stochastic processes, this pivotal data analysis topic is loaded with various challenges like complex latent patterns, concept drift, and overfitting that may mislead the model and cause a high false alarm rate. Handling these challenges leads the advanced anomaly detection methods to develop sophisticated decision logic, which turns them into mysterious and inexplicable black-boxes. Contrary to this trend, end-users expect transparency and verifiability to trust a model and the outcomes it produces. Also, pointing the users to the most anomalous/malicious areas of time series and causal features could save them time, energy, and money. For the mentioned reasons, this thesis is addressing the crucial challenges in an end-to-end pipeline of stream-based anomaly detection through the three essential phases of behavior prediction, inference, and interpretation. The first step is focused on devising a time series model that leads to high average accuracy as well as small error deviation. On this basis, we propose higher-quality anomaly detection and scoring techniques that utilize the related contexts to reclassify the observations and post-pruning the unjustified events. Last but not least, we make the predictive process transparent and verifiable by providing meaningful reasoning behind its generated results based on the understandable concepts by a human. The provided insight can pinpoint the anomalous regions of time series and explain why the current status of a system has been flagged as anomalous. Stream-based anomaly detection research is a principal area of innovation to support our economy, security, and even the safety and health of societies worldwide. We believe our proposed analysis techniques can contribute to building a situational awareness platform and open new perspectives in a variety of domains like cybersecurity, and health
    • …
    corecore