205 research outputs found

    Zeta Functions of Monomial Deformations of Delsarte Hypersurfaces

    Get PDF
    Let XλX_\lambda and XλX_\lambda' be monomial deformations of two Delsarte hypersurfaces in weighted projective spaces. In this paper we give a sufficient condition so that their zeta functions have a common factor. This generalises results by Doran, Kelly, Salerno, Sperber, Voight and Whitcher [arXiv:1612.09249], where they showed this for a particular monomial deformation of a Calabi-Yau invertible polynomial. It turns out that our factor can be of higher degree than the factor found in [arXiv:1612.09249]

    Computing zeta functions of arithmetic schemes

    Full text link
    We present new algorithms for computing zeta functions of algebraic varieties over finite fields. In particular, let X be an arithmetic scheme (scheme of finite type over Z), and for a prime p let zeta_{X_p}(s) be the local factor of its zeta function. We present an algorithm that computes zeta_{X_p}(s) for a single prime p in time p^(1/2+o(1)), and another algorithm that computes zeta_{X_p}(s) for all primes p < N in time N (log N)^(3+o(1)). These generalise previous results of the author from hyperelliptic curves to completely arbitrary varieties.Comment: 23 pages, to appear in the Proceedings of the London Mathematical Societ

    Introduction to Arithmetic Mirror Symmetry

    Full text link
    We describe how to find period integrals and Picard-Fuchs differential equations for certain one-parameter families of Calabi-Yau manifolds. These families can be seen as varieties over a finite field, in which case we show in an explicit example that the number of points of a generic element can be given in terms of p-adic period integrals. We also discuss several approaches to finding zeta functions of mirror manifolds and their factorizations. These notes are based on lectures given at the Fields Institute during the thematic program on Calabi-Yau Varieties: Arithmetic, Geometry, and Physics
    corecore