36,674 research outputs found

    Computing the Volume of a Union of Balls: a Certified Algorithm

    Get PDF
    Balls and spheres are amongst the simplest 3D modeling primitives, and computing the volume of a union of balls is an elementary problem. Although a number of strategies addressing this problem have been investigated in several communities, we are not aware of any robust algorithm, and present the first such algorithm. Our calculation relies on the decomposition of the volume of the union into convex regions, namely the restrictions of the balls to their regions in the power diagram. Theoretically, we establish a formula for the volume of a restriction, based on Gauss' divergence theorem. The proof being constructive, we develop the associated algorithm. On the implementation side, we carefully analyse the predicates and constructions involved in the volume calculation, and present a certified implementation relying on interval arithmetic. The result is certified in the sense that the exact volume belongs to the interval computed using the interval arithmetic. Experimental results are presented on hand-crafted models presenting various difficulties, as well as on the 58,898 models found in the 2009-07-10 release of the Protein Data Bank

    Maximization of Laplace-Beltrami eigenvalues on closed Riemannian surfaces

    Get PDF
    Let (M,g)(M,g) be a connected, closed, orientable Riemannian surface and denote by λk(M,g)\lambda_k(M,g) the kk-th eigenvalue of the Laplace-Beltrami operator on (M,g)(M,g). In this paper, we consider the mapping (M,g)λk(M,g)(M, g)\mapsto \lambda_k(M,g). We propose a computational method for finding the conformal spectrum Λkc(M,[g0])\Lambda^c_k(M,[g_0]), which is defined by the eigenvalue optimization problem of maximizing λk(M,g)\lambda_k(M,g) for kk fixed as gg varies within a conformal class [g0][g_0] of fixed volume textrmvol(M,g)=1textrm{vol}(M,g) = 1. We also propose a computational method for the problem where MM is additionally allowed to vary over surfaces with fixed genus, γ\gamma. This is known as the topological spectrum for genus γ\gamma and denoted by Λkt(γ)\Lambda^t_k(\gamma). Our computations support a conjecture of N. Nadirashvili (2002) that Λkt(0)=8πk\Lambda^t_k(0) = 8 \pi k, attained by a sequence of surfaces degenerating to a union of kk identical round spheres. Furthermore, based on our computations, we conjecture that Λkt(1)=8π23+8π(k1)\Lambda^t_k(1) = \frac{8\pi^2}{\sqrt{3}} + 8\pi (k-1), attained by a sequence of surfaces degenerating into a union of an equilateral flat torus and k1k-1 identical round spheres. The values are compared to several surfaces where the Laplace-Beltrami eigenvalues are well-known, including spheres, flat tori, and embedded tori. In particular, we show that among flat tori of volume one, the kk-th Laplace-Beltrami eigenvalue has a local maximum with value λk=4π2k22(k2214)12\lambda_k = 4\pi^2 \left\lceil \frac{k}{2} \right\rceil^2 \left( \left\lceil \frac{k}{2} \right\rceil^2 - \frac{1}{4}\right)^{-\frac{1}{2}}. Several properties are also studied computationally, including uniqueness, symmetry, and eigenvalue multiplicity.Comment: 43 pages, 18 figure

    Birthday Inequalities, Repulsion, and Hard Spheres

    Get PDF
    We study a birthday inequality in random geometric graphs: the probability of the empty graph is upper bounded by the product of the probabilities that each edge is absent. We show the birthday inequality holds at low densities, but does not hold in general. We give three different applications of the birthday inequality in statistical physics and combinatorics: we prove lower bounds on the free energy of the hard sphere model and upper bounds on the number of independent sets and matchings of a given size in d-regular graphs. The birthday inequality is implied by a repulsion inequality: the expected volume of the union of spheres of radius r around n randomly placed centers increases if we condition on the event that the centers are at pairwise distance greater than r. Surprisingly we show that the repulsion inequality is not true in general, and in particular that it fails in 24-dimensional Euclidean space: conditioning on the pairwise repulsion of centers of 24-dimensional spheres can decrease the expected volume of their union

    Computation of protein geometry and its applications: Packing and function prediction

    Full text link
    This chapter discusses geometric models of biomolecules and geometric constructs, including the union of ball model, the weigthed Voronoi diagram, the weighted Delaunay triangulation, and the alpha shapes. These geometric constructs enable fast and analytical computaton of shapes of biomoleculres (including features such as voids and pockets) and metric properties (such as area and volume). The algorithms of Delaunay triangulation, computation of voids and pockets, as well volume/area computation are also described. In addition, applications in packing analysis of protein structures and protein function prediction are also discussed.Comment: 32 pages, 9 figure

    Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes

    Full text link
    Given a set Σ\Sigma of spheres in Ed\mathbb{E}^d, with d3d\ge{}3 and dd odd, having a fixed number of mm distinct radii ρ1,ρ2,...,ρm\rho_1,\rho_2,...,\rho_m, we show that the worst-case combinatorial complexity of the convex hull CHd(Σ)CH_d(\Sigma) of Σ\Sigma is Θ(1ijmninjd2)\Theta(\sum_{1\le{}i\ne{}j\le{}m}n_in_j^{\lfloor\frac{d}{2}\rfloor}), where nin_i is the number of spheres in Σ\Sigma with radius ρi\rho_i. To prove the lower bound, we construct a set of Θ(n1+n2)\Theta(n_1+n_2) spheres in Ed\mathbb{E}^d, with d3d\ge{}3 odd, where nin_i spheres have radius ρi\rho_i, i=1,2i=1,2, and ρ2ρ1\rho_2\ne\rho_1, such that their convex hull has combinatorial complexity Ω(n1n2d2+n2n1d2)\Omega(n_1n_2^{\lfloor\frac{d}{2}\rfloor}+n_2n_1^{\lfloor\frac{d}{2}\rfloor}). Our construction is then generalized to the case where the spheres have m3m\ge{}3 distinct radii. For the upper bound, we reduce the sphere convex hull problem to the problem of computing the worst-case combinatorial complexity of the convex hull of a set of mm dd-dimensional convex polytopes lying on mm parallel hyperplanes in Ed+1\mathbb{E}^{d+1}, where d3d\ge{}3 odd, a problem which is of independent interest. More precisely, we show that the worst-case combinatorial complexity of the convex hull of a set {P1,P2,...,Pm}\{\mathcal{P}_1,\mathcal{P}_2,...,\mathcal{P}_m\} of mm dd-dimensional convex polytopes lying on mm parallel hyperplanes of Ed+1\mathbb{E}^{d+1} is O(1ijmninjd2)O(\sum_{1\le{}i\ne{}j\le{}m}n_in_j^{\lfloor\frac{d}{2}\rfloor}), where nin_i is the number of vertices of Pi\mathcal{P}_i. We end with algorithmic considerations, and we show how our tight bounds for the parallel polytope convex hull problem, yield tight bounds on the combinatorial complexity of the Minkowski sum of two convex polytopes in Ed\mathbb{E}^d.Comment: 22 pages, 5 figures, new proof of upper bound for the complexity of the convex hull of parallel polytopes (the new proof gives upper bounds for all face numbers of the convex hull of the parallel polytopes

    Surface-Surface-Intersection Computation using a Bounding Volume Hierarchy with Osculating Toroidal Patches in the Leaf Nodes

    Get PDF
    We present an efficient and robust algorithm for computing the intersection curve of two freeform surfaces using a Bounding Volume Hierarchy (BVH), where the leaf nodes contain osculating toroidal patches. The covering of each surface by a union of tightly fitting toroidal patches greatly simplifies the geometric operations involved in the surface-surface-intersection computation, i.e., the bounding of surface normals, the detection of surface binormals, the point projection from one surface to the other surface, and the intersection of local surface patches. Moreover, the hierarchy of simple bounding volumes (such as rectangle-swept spheres) accelerates the geometric search for the potential pairs of surface patches that may generate some curve segments in the surface-surface-intersection. We demonstrate the effectiveness of our approach by using test examples of intersecting two freeform surfaces, including some highly non-trivial examples with tangential intersections. In particular, we test the intersection of two almost identical surfaces, where one surface is obtained from the same surface, using a rotation around a normal line by a smaller and smaller angle θ = 10−k degree, k = 0, · · · , 5. The intersection results are often given as surface subpatches in some highly tangential areas, and even as the whole surface itself, when θ = 0.00001◦

    Sphere Packing with Limited Overlap

    Full text link
    The classical sphere packing problem asks for the best (infinite) arrangement of non-overlapping unit balls which cover as much space as possible. We define a generalized version of the problem, where we allow each ball a limited amount of overlap with other balls. We study two natural choices of overlap measures and obtain the optimal lattice packings in a parameterized family of lattices which contains the FCC, BCC, and integer lattice.Comment: 12 pages, 3 figures, submitted to SOCG 201
    corecore