41,359 research outputs found

    Computing the optimal distributionally-robust strategy to commit to

    Full text link
    The Stackelberg game model, where a leader commits to a strategy and the follower best responds, has found widespread application, particularly to security problems. In the security setting, the goal is for the leader to compute an optimal strategy to commit to, in order to protect some asset. In many of these applications, the parameters of the follower utility model are not known with certainty. Distributionally-robust optimization addresses this issue by allowing a distribution over possible model parameters, where this distribution comes from a set of possible distributions. The goal is to maximize the expected utility with respect to the worst-case distribution. We initiate the study of distributionally-robust models for computing the optimal strategy to commit to. We consider the case of normal-form games with uncertainty about the follower utility model. Our main theoretical result is to show that a distributionally-robust Stackelberg equilibrium always exists across a wide array of uncertainty models. For the case of a finite set of possible follower utility functions we present two algorithms to compute a distributionally-robust strong Stackelberg equilibrium (DRSSE) using mathematical programs. Next, in the general case where there is an infinite number of possible follower utility functions and the uncertainty is represented by a Wasserstein ball around a finitely-supported nominal distribution, we give an incremental mixed-integer-programming-based algorithm for computing the optimal distributionally-robust strategy. Experiments substantiate the tractability of our algorithm on a classical Stackelberg game, showing that our approach scales to medium-sized games

    Stackelberg Equilibria in Normal-Form Games with Sequential Strategies

    Get PDF
    Ve Stackelbergových hrách se musí jeden z agentů přihlásit ke své strategii ještě před tím, než ostatní hráči spočítají své strategie. To jim dává možnost hrát svou nejlepší strategii proti prvnímu hráči. Standardní modely výpočtu optimální strategie prvního hráče v sekvenčních hrách jsou výpočetně náročné. V této práci se zaměříme na Stackelbergovy hry a jejich řešení ve hrách v normální formě se sekvenčními strategiemi, což je zjednodušená forma sekvenční hry, v níž žádný z hráčů nemá v průběhu hry žádné informace o akcích svých protihráčů.In Stackelberg games, one agent must commit to a strategy before the other agents compute their strategies, allowing them to always play the best response to first player's strategy. Standard models of computing optimal strategy of the first player in sequential games are challenging to compute. In this work, we will focus on Stackelberg games and their solution in normal-form games with sequential strategies, which is a simplified form of a sequential games, in which the players have no information about actions of their opponents throughout the game

    The Transactional Conflict Problem

    Full text link
    The transactional conflict problem arises in transactional systems whenever two or more concurrent transactions clash on a data item. While the standard solution to such conflicts is to immediately abort one of the transactions, some practical systems consider the alternative of delaying conflict resolution for a short interval, which may allow one of the transactions to commit. The challenge in the transactional conflict problem is to choose the optimal length of this delay interval so as to minimize the overall running time penalty for the conflicting transactions. In this paper, we propose a family of optimal online algorithms for the transactional conflict problem. Specifically, we consider variants of this problem which arise in different implementations of transactional systems, namely "requestor wins" and "requestor aborts" implementations: in the former, the recipient of a coherence request is aborted, whereas in the latter, it is the requestor which has to abort. Both strategies are implemented by real systems. We show that the requestor aborts case can be reduced to a classic instance of the ski rental problem, while the requestor wins case leads to a new version of this classical problem, for which we derive optimal deterministic and randomized algorithms. Moreover, we prove that, under a simplified adversarial model, our algorithms are constant-competitive with the offline optimum in terms of throughput. We validate our algorithmic results empirically through a hardware simulation of hardware transactional memory (HTM), showing that our algorithms can lead to non-trivial performance improvements for classic concurrent data structures

    Robust Stackelberg Equilibria in Extensive-Form Games and Extension to Limited Lookahead

    Full text link
    Stackelberg equilibria have become increasingly important as a solution concept in computational game theory, largely inspired by practical problems such as security settings. In practice, however, there is typically uncertainty regarding the model about the opponent. This paper is, to our knowledge, the first to investigate Stackelberg equilibria under uncertainty in extensive-form games, one of the broadest classes of game. We introduce robust Stackelberg equilibria, where the uncertainty is about the opponent's payoffs, as well as ones where the opponent has limited lookahead and the uncertainty is about the opponent's node evaluation function. We develop a new mixed-integer program for the deterministic limited-lookahead setting. We then extend the program to the robust setting for Stackelberg equilibrium under unlimited and under limited lookahead by the opponent. We show that for the specific case of interval uncertainty about the opponent's payoffs (or about the opponent's node evaluations in the case of limited lookahead), robust Stackelberg equilibria can be computed with a mixed-integer program that is of the same asymptotic size as that for the deterministic setting.Comment: Published at AAAI1

    Imitative Follower Deception in Stackelberg Games

    Full text link
    Information uncertainty is one of the major challenges facing applications of game theory. In the context of Stackelberg games, various approaches have been proposed to deal with the leader's incomplete knowledge about the follower's payoffs, typically by gathering information from the leader's interaction with the follower. Unfortunately, these approaches rely crucially on the assumption that the follower will not strategically exploit this information asymmetry, i.e., the follower behaves truthfully during the interaction according to their actual payoffs. As we show in this paper, the follower may have strong incentives to deceitfully imitate the behavior of a different follower type and, in doing this, benefit significantly from inducing the leader into choosing a highly suboptimal strategy. This raises a fundamental question: how to design a leader strategy in the presence of a deceitful follower? To answer this question, we put forward a basic model of Stackelberg games with (imitative) follower deception and show that the leader is indeed able to reduce the loss due to follower deception with carefully designed policies. We then provide a systematic study of the problem of computing the optimal leader policy and draw a relatively complete picture of the complexity landscape; essentially matching positive and negative complexity results are provided for natural variants of the model. Our intractability results are in sharp contrast to the situation with no deception, where the leader's optimal strategy can be computed in polynomial time, and thus illustrate the intrinsic difficulty of handling follower deception. Through simulations we also examine the benefit of considering follower deception in randomly generated games
    corecore