1,605 research outputs found

    Quantum algorithms for problems in number theory, algebraic geometry, and group theory

    Full text link
    Quantum computers can execute algorithms that sometimes dramatically outperform classical computation. Undoubtedly the best-known example of this is Shor's discovery of an efficient quantum algorithm for factoring integers, whereas the same problem appears to be intractable on classical computers. Understanding what other computational problems can be solved significantly faster using quantum algorithms is one of the major challenges in the theory of quantum computation, and such algorithms motivate the formidable task of building a large-scale quantum computer. This article will review the current state of quantum algorithms, focusing on algorithms for problems with an algebraic flavor that achieve an apparent superpolynomial speedup over classical computation.Comment: 20 pages, lecture notes for 2010 Summer School on Diversities in Quantum Computation/Information at Kinki Universit

    The Unification and Decomposition of Processing Structures Using Lattice Theoretic Methods

    Get PDF
    The purpose of this dissertation is to demonstrate that lattice theoretic methods can be used to decompose and unify computational structures over a variety of processing systems. The unification arguments provide a better understanding of the intricacies of the development of processing system decomposition. Since abstract algebraic techniques are used, the decomposition process is systematized which makes it conducive to the use of computers as tools for decomposition. A general algorithm using the lattice theoretic method is developed to examine the structures and therefore decomposition properties of integer and polynomial rings. Two fundamental representations, the Sino-correspondence and the weighted radix representation, are derived for integer and polynomial structures and are shown to be a natural result of the decomposition process. They are used in developing systematic methods for decomposing discrete Fourier transforms and discrete linear systems. That is, fast Fourier transforms and partial fraction expansions of linear systems are a result of the natural representation derived using the lattice theoretic method. The discrete Fourier transform is derived from a lattice theoretic base demonstrating its independence of the continuous form and of the field over which it is computed. The same properties are demonstrated for error control codes based on polynomials. Partial fraction expansions are shown to be independent of the concept of a derivative for repeated roots and the field used to implement them

    Quantum phase uncertainty in mutually unbiased measurements and Gauss sums

    Full text link
    Mutually unbiased bases (MUBs), which are such that the inner product between two vectors in different orthogonal bases is constant equal to the inverse 1/d1/\sqrt{d}, with dd the dimension of the finite Hilbert space, are becoming more and more studied for applications such as quantum tomography and cryptography, and in relation to entangled states and to the Heisenberg-Weil group of quantum optics. Complete sets of MUBs of cardinality d+1d+1 have been derived for prime power dimensions d=pmd=p^m using the tools of abstract algebra (Wootters in 1989, Klappenecker in 2003). Presumably, for non prime dimensions the cardinality is much less. The bases can be reinterpreted as quantum phase states, i.e. as eigenvectors of Hermitean phase operators generalizing those introduced by Pegg & Barnett in 1989. The MUB states are related to additive characters of Galois fields (in odd characteristic p) and of Galois rings (in characteristic 2). Quantum Fourier transforms of the components in vectors of the bases define a more general class of MUBs with multiplicative characters and additive ones altogether. We investigate the complementary properties of the above phase operator with respect to the number operator. We also study the phase probability distribution and variance for physical states and find them related to the Gauss sums, which are sums over all elements of the field (or of the ring) of the product of multiplicative and additive characters. Finally we relate the concepts of mutual unbiasedness and maximal entanglement. This allows to use well studied algebraic concepts as efficient tools in our quest of minimal uncertainty in quantum information primitives.Comment: 11 page

    Notes on the Riemann Hypothesis

    Full text link
    These notes were written from a series of lectures given in March 2010 at the Universidad Complutense of Madrid and then in Barcelona for the centennial anniversary of the Spanish Mathematical Society (RSME). Our aim is to give an introduction to the Riemann Hypothesis and a panoramic view of the world of zeta and L-functions. We first review Riemann's foundational article and discuss the mathematical background of the time and his possible motivations for making his famous conjecture. We discuss some of the most relevant developments after Riemann that have contributed to a better understanding of the conjecture.Comment: 2 sections added, 55 pages, 6 figure

    Multiplierless DCT Algorithm for Image Compression Applications

    Get PDF
    This paper presents a novel error-free (infinite-precision) architecture for the fast implementation of 8x8 2-D Discrete Cosine Transform. The architecture uses a new algebraic integer encoding of a 1-D radix-8 DCT that allows the separable computation of a 2-D 8x8 DCT without any intermediate number representation conversions. This is a considerable improvement on previously introduced algebraic integer encoding techniques to compute both DCT and IDCT which eliminates the requirements to approximate the transformation matrix ele- ments by obtaining their exact representations and hence mapping the transcendental functions without any errors. Apart from the multiplication-free nature, this new mapping scheme fits to this algorithm, eliminating any computational or quantization errors and resulting short-word-length and high-speed-design

    Diffraction from visible lattice points and k-th power free integers

    Get PDF
    We prove that the set of visible points of any lattice of dimension at least 2 has pure point diffraction spectrum, and we determine the diffraction spectrum explicitly. This settles previous speculation on the exact nature of the diffraction in this situation, see math-ph/9903046 and references therein. Using similar methods we show the same result for the 1-dimensional set of k-th power free integers with k at least 2. Of special interest is the fact that neither of these sets is a Delone set --- each has holes of unbounded inradius. We provide a careful formulation of the mathematical ideas underlying the study of diffraction from infinite point sets.Comment: 45 pages, with minor corrections and improvements; dedicated to Ludwig Danzer on the occasion of his 70th birthda

    Rational series and asymptotic expansion for linear homogeneous divide-and-conquer recurrences

    Full text link
    Among all sequences that satisfy a divide-and-conquer recurrence, the sequences that are rational with respect to a numeration system are certainly the most immediate and most essential. Nevertheless, until recently they have not been studied from the asymptotic standpoint. We show how a mechanical process permits to compute their asymptotic expansion. It is based on linear algebra, with Jordan normal form, joint spectral radius, and dilation equations. The method is compared with the analytic number theory approach, based on Dirichlet series and residues, and new ways to compute the Fourier series of the periodic functions involved in the expansion are developed. The article comes with an extended bibliography
    • …
    corecore