4 research outputs found

    Partial Latin rectangle graphs and autoparatopism groups of partial Latin rectangles with trivial autotopism groups

    Get PDF
    An r×sr \times s partial Latin rectangle (lij)(l_{ij}) is an r×sr \times s matrix containing elements of {1,2,…,n}∪{⋅}\{1,2,\ldots,n\} \cup \{\cdot\} such that each row and each column contain at most one copy of any symbol in {1,2,…,n}\{1,2,\ldots,n\}. An entry is a triple (i,j,lij)(i,j,l_{ij}) with lij≠⋅l_{ij} \neq \cdot. Partial Latin rectangles are operated on by permuting the rows, columns, and symbols, and by uniformly permuting the coordinates of the set of entries. The stabilizers under these operations are called the autotopism group and the autoparatopism group, respectively. We develop the theory of symmetries of partial Latin rectangles, introducing the concept of a partial Latin rectangle graph. We give constructions of mm-entry partial Latin rectangles with trivial autotopism groups for all possible autoparatopism groups (up to isomorphism) when: (a) r=s=nr=s=n, i.e., partial Latin squares, (b) r=2r=2 and s=ns=n, and (c) r=2r=2 and s≠ns \neq n

    A historical perspective of the theory of isotopisms

    Get PDF
    In the middle of the twentieth century, Albert and Bruck introduced the theory of isotopisms of non-associative algebras and quasigroups as a generalization of the classical theory of isomorphisms in order to study and classify such structures according to more general symmetries. Since then, a wide range of applications have arisen in the literature concerning the classification and enumeration of different algebraic and combinatorial structures according to their isotopism classes. In spite of that, there does not exist any contribution dealing with the origin and development of such a theory. This paper is a first approach in this regard.Junta de Andalucí
    corecore