3 research outputs found

    Fine-Grained Complexity and Algorithms for the Schulze Voting Method

    Full text link
    We study computational aspects of a well-known single-winner voting rule called the Schulze method [Schulze, 2003] which is used broadly in practice. In this method the voters give (weak) ordinal preference ballots which are used to define the weighted majority graph (WMG) of direct comparisons between pairs of candidates. The choice of the winner comes from indirect comparisons in the graph, and more specifically from considering directed paths instead of direct comparisons between candidates. When the input is the WMG, to our knowledge, the fastest algorithm for computing all winners in the Schulze method uses a folklore reduction to the All-Pairs Bottleneck Paths problem and runs in O(m2.69)O(m^{2.69}) time, where mm is the number of candidates. It is an interesting open question whether this can be improved. Our first result is a combinatorial algorithm with a nearly quadratic running time for computing all winners. This running time is essentially optimal. If the input to the Schulze winners problem is not the WMG but the preference profile, then constructing the WMG is a bottleneck that increases the running time significantly; in the special case when there are mm candidates and n=O(m)n=O(m) voters, the running time is O(m2.69)O(m^{2.69}), or O(m2.5)O(m^{2.5}) if there is a nearly-linear time algorithm for multiplying dense square matrices. To address this bottleneck, we prove a formal equivalence between the well-studied Dominance Product problem and the problem of computing the WMG. We prove a similar connection between the so called Dominating Pairs problem and the problem of finding a winner in the Schulze method. Our paper is the first to bring fine-grained complexity into the field of computational social choice. Using it we can identify voting protocols that are unlikely to be practical for large numbers of candidates and/or voters, as their complexity is likely, say at least cubic.Comment: 19 pages, 2 algorithms, 2 tables. A previous version of this work appears in EC 2021. In this version we strengthen Theorem 6.2 which now holds also for the problem of finding a Schulze winne

    Multi-Winner Voting with Approval Preferences

    Get PDF
    Approval-based committee (ABC) rules are voting rules that output a fixed-size subset of candidates, a so-called committee. ABC rules select committees based on dichotomous preferences, i.e., a voter either approves or disapproves a candidate. This simple type of preferences makes ABC rules widely suitable for practical use. In this book, we summarize the current understanding of ABC rules from the viewpoint of computational social choice. The main focus is on axiomatic analysis, algorithmic results, and relevant applications.Comment: This is a draft of the upcoming book "Multi-Winner Voting with Approval Preferences

    The Schulze Method of Voting

    Full text link
    We propose a new single-winner election method ("Schulze method") and prove that it satisfies many academic criteria (e.g. monotonicity, reversal symmetry, resolvability, independence of clones, Condorcet criterion, k-consistency, polynomial runtime). We then generalize this method to proportional representation by the single transferable vote ("Schulze STV") and to methods to calculate a proportional ranking ("Schulze proportional ranking"). Furthermore, we propose a generalization of the Condorcet criterion to multi-winner elections. This paper contains a large number of examples to illustrate the proposed methods
    corecore