20,578 research outputs found

    Deep learning-based parameter mapping for joint relaxation and diffusion tensor MR Fingerprinting

    Full text link
    Magnetic Resonance Fingerprinting (MRF) enables the simultaneous quantification of multiple properties of biological tissues. It relies on a pseudo-random acquisition and the matching of acquired signal evolutions to a precomputed dictionary. However, the dictionary is not scalable to higher-parametric spaces, limiting MRF to the simultaneous mapping of only a small number of parameters (proton density, T1 and T2 in general). Inspired by diffusion-weighted SSFP imaging, we present a proof-of-concept of a novel MRF sequence with embedded diffusion-encoding gradients along all three axes to efficiently encode orientational diffusion and T1 and T2 relaxation. We take advantage of a convolutional neural network (CNN) to reconstruct multiple quantitative maps from this single, highly undersampled acquisition. We bypass expensive dictionary matching by learning the implicit physical relationships between the spatiotemporal MRF data and the T1, T2 and diffusion tensor parameters. The predicted parameter maps and the derived scalar diffusion metrics agree well with state-of-the-art reference protocols. Orientational diffusion information is captured as seen from the estimated primary diffusion directions. In addition to this, the joint acquisition and reconstruction framework proves capable of preserving tissue abnormalities in multiple sclerosis lesions

    Linear-time Online Action Detection From 3D Skeletal Data Using Bags of Gesturelets

    Full text link
    Sliding window is one direct way to extend a successful recognition system to handle the more challenging detection problem. While action recognition decides only whether or not an action is present in a pre-segmented video sequence, action detection identifies the time interval where the action occurred in an unsegmented video stream. Sliding window approaches for action detection can however be slow as they maximize a classifier score over all possible sub-intervals. Even though new schemes utilize dynamic programming to speed up the search for the optimal sub-interval, they require offline processing on the whole video sequence. In this paper, we propose a novel approach for online action detection based on 3D skeleton sequences extracted from depth data. It identifies the sub-interval with the maximum classifier score in linear time. Furthermore, it is invariant to temporal scale variations and is suitable for real-time applications with low latency

    Fast Algorithms for Parameterized Problems with Relaxed Disjointness Constraints

    Full text link
    In parameterized complexity, it is a natural idea to consider different generalizations of classic problems. Usually, such generalization are obtained by introducing a "relaxation" variable, where the original problem corresponds to setting this variable to a constant value. For instance, the problem of packing sets of size at most pp into a given universe generalizes the Maximum Matching problem, which is recovered by taking p=2p=2. Most often, the complexity of the problem increases with the relaxation variable, but very recently Abasi et al. have given a surprising example of a problem --- rr-Simple kk-Path --- that can be solved by a randomized algorithm with running time O(2O(klogrr))O^*(2^{O(k \frac{\log r}{r})}). That is, the complexity of the problem decreases with rr. In this paper we pursue further the direction sketched by Abasi et al. Our main contribution is a derandomization tool that provides a deterministic counterpart of the main technical result of Abasi et al.: the O(2O(klogrr))O^*(2^{O(k \frac{\log r}{r})}) algorithm for (r,k)(r,k)-Monomial Detection, which is the problem of finding a monomial of total degree kk and individual degrees at most rr in a polynomial given as an arithmetic circuit. Our technique works for a large class of circuits, and in particular it can be used to derandomize the result of Abasi et al. for rr-Simple kk-Path. On our way to this result we introduce the notion of representative sets for multisets, which may be of independent interest. Finally, we give two more examples of problems that were already studied in the literature, where the same relaxation phenomenon happens. The first one is a natural relaxation of the Set Packing problem, where we allow the packed sets to overlap at each element at most rr times. The second one is Degree Bounded Spanning Tree, where we seek for a spanning tree of the graph with a small maximum degree
    corecore