85,934 research outputs found

    Computing the Rank Profile Matrix

    Get PDF
    The row (resp. column) rank profile of a matrix describes the staircase shape of its row (resp. column) echelon form. In an ISSAC'13 paper, we proposed a recursive Gaussian elimination that can compute simultaneously the row and column rank profiles of a matrix as well as those of all of its leading sub-matrices, in the same time as state of the art Gaussian elimination algorithms. Here we first study the conditions making a Gaus-sian elimination algorithm reveal this information. Therefore, we propose the definition of a new matrix invariant, the rank profile matrix, summarizing all information on the row and column rank profiles of all the leading sub-matrices. We also explore the conditions for a Gaussian elimination algorithm to compute all or part of this invariant, through the corresponding PLUQ decomposition. As a consequence, we show that the classical iterative CUP decomposition algorithm can actually be adapted to compute the rank profile matrix. Used, in a Crout variant, as a base-case to our ISSAC'13 implementation, it delivers a significant improvement in efficiency. Second, the row (resp. column) echelon form of a matrix are usually computed via different dedicated triangular decompositions. We show here that, from some PLUQ decompositions, it is possible to recover the row and column echelon forms of a matrix and of any of its leading sub-matrices thanks to an elementary post-processing algorithm

    Rank-profile revealing Gaussian elimination and the CUP matrix decomposition

    Get PDF
    Transforming a matrix over a field to echelon form, or decomposing the matrix as a product of structured matrices that reveal the rank profile, is a fundamental building block of computational exact linear algebra. This paper surveys the well known variations of such decompositions and transformations that have been proposed in the literature. We present an algorithm to compute the CUP decomposition of a matrix, adapted from the LSP algorithm of Ibarra, Moran and Hui (1982), and show reductions from the other most common Gaussian elimination based matrix transformations and decompositions to the CUP decomposition. We discuss the advantages of the CUP algorithm over other existing algorithms by studying time and space complexities: the asymptotic time complexity is rank sensitive, and comparing the constants of the leading terms, the algorithms for computing matrix invariants based on the CUP decomposition are always at least as good except in one case. We also show that the CUP algorithm, as well as the computation of other invariants such as transformation to reduced column echelon form using the CUP algorithm, all work in place, allowing for example to compute the inverse of a matrix on the same storage as the input matrix.Comment: 35 page

    Symmetric indefinite triangular factorization revealing the rank profile matrix

    Get PDF
    We present a novel recursive algorithm for reducing a symmetric matrix to a triangular factorization which reveals the rank profile matrix. That is, the algorithm computes a factorization PTAP=LDLT\mathbf{P}^T\mathbf{A}\mathbf{P} = \mathbf{L}\mathbf{D}\mathbf{L}^T where P\mathbf{P} is a permutation matrix, L\mathbf{L} is lower triangular with a unit diagonal and D\mathbf{D} is symmetric block diagonal with 1×11{\times}1 and 2×22{\times}2 antidiagonal blocks. The novel algorithm requires O(n2rω−2)O(n^2r^{\omega-2}) arithmetic operations. Furthermore, experimental results demonstrate that our algorithm can even be slightly more than twice as fast as the state of the art unsymmetric Gaussian elimination in most cases, that is it achieves approximately the same computational speed. By adapting the pivoting strategy developed in the unsymmetric case, we show how to recover the rank profile matrix from the permutation matrix and the support of the block-diagonal matrix. There is an obstruction in characteristic 22 for revealing the rank profile matrix which requires to relax the shape of the block diagonal by allowing the 2-dimensional blocks to have a non-zero bottom-right coefficient. This relaxed decomposition can then be transformed into a standard PLDLTPT\mathbf{P}\mathbf{L}\mathbf{D}\mathbf{L}^T\mathbf{P}^T decomposition at a negligible cost

    Fast Order Basis and Kernel Basis Computation and Related Problems

    Get PDF
    In this thesis, we present efficient deterministic algorithms for polynomial matrix computation problems, including the computation of order basis, minimal kernel basis, matrix inverse, column basis, unimodular completion, determinant, Hermite normal form, rank and rank profile for matrices of univariate polynomials over a field. The algorithm for kernel basis computation also immediately provides an efficient deterministic algorithm for solving linear systems. The algorithm for column basis also gives efficient deterministic algorithms for computing matrix GCDs, column reduced forms, and Popov normal forms for matrices of any dimension and any rank. We reduce all these problems to polynomial matrix multiplications. The computational costs of our algorithms are then similar to the costs of multiplying matrices, whose dimensions match the input matrix dimensions in the original problems, and whose degrees equal the average column degrees of the original input matrices in most cases. The use of the average column degrees instead of the commonly used matrix degrees, or equivalently the maximum column degrees, makes our computational costs more precise and tighter. In addition, the shifted minimal bases computed by our algorithms are more general than the standard minimal bases

    Settling Some Open Problems on 2-Player Symmetric Nash Equilibria

    Full text link
    Over the years, researchers have studied the complexity of several decision versions of Nash equilibrium in (symmetric) two-player games (bimatrix games). To the best of our knowledge, the last remaining open problem of this sort is the following; it was stated by Papadimitriou in 2007: find a non-symmetric Nash equilibrium (NE) in a symmetric game. We show that this problem is NP-complete and the problem of counting the number of non-symmetric NE in a symmetric game is #P-complete. In 2005, Kannan and Theobald defined the "rank of a bimatrix game" represented by matrices (A, B) to be rank(A+B) and asked whether a NE can be computed in rank 1 games in polynomial time. Observe that the rank 0 case is precisely the zero sum case, for which a polynomial time algorithm follows from von Neumann's reduction of such games to linear programming. In 2011, Adsul et. al. obtained an algorithm for rank 1 games; however, it does not solve the case of symmetric rank 1 games. We resolve this problem

    Computational linear algebra over finite fields

    Get PDF
    We present here algorithms for efficient computation of linear algebra problems over finite fields
    • …
    corecore