2,367 research outputs found

    Compact Random Feature Maps

    Full text link
    Kernel approximation using randomized feature maps has recently gained a lot of interest. In this work, we identify that previous approaches for polynomial kernel approximation create maps that are rank deficient, and therefore do not utilize the capacity of the projected feature space effectively. To address this challenge, we propose compact random feature maps (CRAFTMaps) to approximate polynomial kernels more concisely and accurately. We prove the error bounds of CRAFTMaps demonstrating their superior kernel reconstruction performance compared to the previous approximation schemes. We show how structured random matrices can be used to efficiently generate CRAFTMaps, and present a single-pass algorithm using CRAFTMaps to learn non-linear multi-class classifiers. We present experiments on multiple standard data-sets with performance competitive with state-of-the-art results.Comment: 9 page

    New Shortest Lattice Vector Problems of Polynomial Complexity

    Full text link
    The Shortest Lattice Vector (SLV) problem is in general hard to solve, except for special cases (such as root lattices and lattices for which an obtuse superbase is known). In this paper, we present a new class of SLV problems that can be solved efficiently. Specifically, if for an nn-dimensional lattice, a Gram matrix is known that can be written as the difference of a diagonal matrix and a positive semidefinite matrix of rank kk (for some constant kk), we show that the SLV problem can be reduced to a kk-dimensional optimization problem with countably many candidate points. Moreover, we show that the number of candidate points is bounded by a polynomial function of the ratio of the smallest diagonal element and the smallest eigenvalue of the Gram matrix. Hence, as long as this ratio is upper bounded by a polynomial function of nn, the corresponding SLV problem can be solved in polynomial complexity. Our investigations are motivated by the emergence of such lattices in the field of Network Information Theory. Further applications may exist in other areas.Comment: 13 page

    Structured total least norm and approximate GCDs of inexact polynomials

    Get PDF
    The determination of an approximate greatest common divisor (GCD) of two inexact polynomials f=f(y) and g=g(y) arises in several applications, including signal processing and control. This approximate GCD can be obtained by computing a structured low rank approximation S*(f,g) of the Sylvester resultant matrix S(f,g). In this paper, the method of structured total least norm (STLN) is used to compute a low rank approximation of S(f,g), and it is shown that important issues that have a considerable effect on the approximate GCD have not been considered. For example, the established works only yield one matrix S*(f,g), and therefore one approximate GCD, but it is shown in this paper that a family of structured low rank approximations can be computed, each member of which yields a different approximate GCD. Examples that illustrate the importance of these and other issues are presented

    Residual Minimizing Model Interpolation for Parameterized Nonlinear Dynamical Systems

    Full text link
    We present a method for approximating the solution of a parameterized, nonlinear dynamical system using an affine combination of solutions computed at other points in the input parameter space. The coefficients of the affine combination are computed with a nonlinear least squares procedure that minimizes the residual of the governing equations. The approximation properties of this residual minimizing scheme are comparable to existing reduced basis and POD-Galerkin model reduction methods, but its implementation requires only independent evaluations of the nonlinear forcing function. It is particularly appropriate when one wishes to approximate the states at a few points in time without time marching from the initial conditions. We prove some interesting characteristics of the scheme including an interpolatory property, and we present heuristics for mitigating the effects of the ill-conditioning and reducing the overall cost of the method. We apply the method to representative numerical examples from kinetics - a three state system with one parameter controlling the stiffness - and conductive heat transfer - a nonlinear parabolic PDE with a random field model for the thermal conductivity.Comment: 28 pages, 8 figures, 2 table
    • …
    corecore