12,485 research outputs found

    Geodesic-Preserving Polygon Simplification

    Full text link
    Polygons are a paramount data structure in computational geometry. While the complexity of many algorithms on simple polygons or polygons with holes depends on the size of the input polygon, the intrinsic complexity of the problems these algorithms solve is often related to the reflex vertices of the polygon. In this paper, we give an easy-to-describe linear-time method to replace an input polygon P\mathcal{P} by a polygon P\mathcal{P}' such that (1) P\mathcal{P}' contains P\mathcal{P}, (2) P\mathcal{P}' has its reflex vertices at the same positions as P\mathcal{P}, and (3) the number of vertices of P\mathcal{P}' is linear in the number of reflex vertices. Since the solutions of numerous problems on polygons (including shortest paths, geodesic hulls, separating point sets, and Voronoi diagrams) are equivalent for both P\mathcal{P} and P\mathcal{P}', our algorithm can be used as a preprocessing step for several algorithms and makes their running time dependent on the number of reflex vertices rather than on the size of P\mathcal{P}

    Query-points visibility constraint minimum link paths in simple polygons

    Full text link
    We study the query version of constrained minimum link paths between two points inside a simple polygon PP with nn vertices such that there is at least one point on the path, visible from a query point. The method is based on partitioning PP into a number of faces of equal link distance from a point, called a link-based shortest path map (SPM). Initially, we solve this problem for two given points ss, tt and a query point qq. Then, the proposed solution is extended to a general case for three arbitrary query points ss, tt and qq. In the former, we propose an algorithm with O(n)O(n) preprocessing time. Extending this approach for the latter case, we develop an algorithm with O(n3)O(n^3) preprocessing time. The link distance of a qq-visiblevisible path between ss, tt as well as the path are provided in time O(logn)O(\log n) and O(m+logn)O(m+\log n), respectively, for the above two cases, where mm is the number of links

    Shortest Path in a Polygon using Sublinear Space

    Get PDF
    \renewcommand{\Re}{{\rm I\!\hspace{-0.025em} R}} \newcommand{\SetX}{\mathsf{X}} \newcommand{\VorX}[1]{\mathcal{V} \pth{#1}} \newcommand{\Polygon}{\mathsf{P}} \newcommand{\Space}{\overline{\mathsf{m}}} \newcommand{\pth}[2][\!]{#1\left({#2}\right)} We resolve an open problem due to Tetsuo Asano, showing how to compute the shortest path in a polygon, given in a read only memory, using sublinear space and subquadratic time. Specifically, given a simple polygon \Polygon with nn vertices in a read only memory, and additional working memory of size \Space, the new algorithm computes the shortest path (in \Polygon) in O( n^2 /\, \Space ) expected time. This requires several new tools, which we believe to be of independent interest

    Querying for the Largest Empty Geometric Object in a Desired Location

    Full text link
    We study new types of geometric query problems defined as follows: given a geometric set PP, preprocess it such that given a query point qq, the location of the largest circle that does not contain any member of PP, but contains qq can be reported efficiently. The geometric sets we consider for PP are boundaries of convex and simple polygons, and point sets. While we primarily focus on circles as the desired shape, we also briefly discuss empty rectangles in the context of point sets.Comment: This version is a significant update of our earlier submission arXiv:1004.0558v1. Apart from new variants studied in Sections 3 and 4, the results have been improved in Section 5.Please note that the change in title and abstract indicate that we have expanded the scope of the problems we stud

    Algorithms for distance problems in planar complexes of global nonpositive curvature

    Full text link
    CAT(0) metric spaces and hyperbolic spaces play an important role in combinatorial and geometric group theory. In this paper, we present efficient algorithms for distance problems in CAT(0) planar complexes. First of all, we present an algorithm for answering single-point distance queries in a CAT(0) planar complex. Namely, we show that for a CAT(0) planar complex K with n vertices, one can construct in O(n^2 log n) time a data structure D of size O(n^2) so that, given a point x in K, the shortest path gamma(x,y) between x and the query point y can be computed in linear time. Our second algorithm computes the convex hull of a finite set of points in a CAT(0) planar complex. This algorithm is based on Toussaint's algorithm for computing the convex hull of a finite set of points in a simple polygon and it constructs the convex hull of a set of k points in O(n^2 log n + nk log k) time, using a data structure of size O(n^2 + k)
    corecore