1,707 research outputs found

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    KALwEN: a new practical and interoperable key management scheme for body sensor networks

    Get PDF
    Key management is the pillar of a security architecture. Body sensor networks (BSNs) pose several challenges–some inherited from wireless sensor networks (WSNs), some unique to themselves–that require a new key management scheme to be tailor-made. The challenge is taken on, and the result is KALwEN, a new parameterized key management scheme that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when bootstrapping or extending a network. One of KALwEN's key features is that it allows sensor devices from different manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other. KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports secure global broadcast, local broadcast, and local (neighbor-to-neighbor) unicast, while preserving past key secrecy and future key secrecy (FKS). The fact that the cryptographic protocols of KALwEN have been formally verified also makes a convincing case. With both formal verification and experimental evaluation, our results should appeal to theorists and practitioners alike

    Shake well before use: Authentication based on Accelerometer Data

    Get PDF
    Small, mobile devices without user interfaces, such as Bluetooth headsets, often need to communicate securely over wireless networks. Active attacks can only be prevented by authenticating wireless communication, which is problematic when devices do not have any a priori information about each other. We introduce a new method for device-to-device authentication by shaking devices together. This paper describes two protocols for combining cryptographic authentication techniques with known methods of accelerometer data analysis to the effect of generating authenticated, secret keys. The protocols differ in their design, one being more conservative from a security point of view, while the other allows more dynamic interactions. Three experiments are used to optimize and validate our proposed authentication method

    H2B: Heartbeat-based Secret Key Generation Using Piezo Vibration Sensors

    Full text link
    We present Heartbeats-2-Bits (H2B), which is a system for securely pairing wearable devices by generating a shared secret key from the skin vibrations caused by heartbeat. This work is motivated by potential power saving opportunity arising from the fact that heartbeat intervals can be detected energy-efficiently using inexpensive and power-efficient piezo sensors, which obviates the need to employ complex heartbeat monitors such as Electrocardiogram or Photoplethysmogram. Indeed, our experiments show that piezo sensors can measure heartbeat intervals on many different body locations including chest, wrist, waist, neck and ankle. Unfortunately, we also discover that the heartbeat interval signal captured by piezo vibration sensors has low Signal-to-Noise Ratio (SNR) because they are not designed as precision heartbeat monitors, which becomes the key challenge for H2B. To overcome this problem, we first apply a quantile function-based quantization method to fully extract the useful entropy from the noisy piezo measurements. We then propose a novel Compressive Sensing-based reconciliation method to correct the high bit mismatch rates between the two independently generated keys caused by low SNR. We prototype H2B using off-the-shelf piezo sensors and evaluate its performance on a dataset collected from different body positions of 23 participants. Our results show that H2B has an overwhelming pairing success rate of 95.6%. We also analyze and demonstrate H2B's robustness against three types of attacks. Finally, our power measurements show that H2B is very power-efficient

    On the feasibility of attribute-based encryption on Internet of Things devices

    Get PDF
    Attribute-based encryption (ABE) could be an effective cryptographic tool for the secure management of Internet of Things (IoT) devices, but its feasibility in the IoT has been under-investigated thus far. This article explores such feasibility for well-known IoT platforms, namely, Intel Galileo Gen 2, Intel Edison, Raspberry pi 1 model B, and Raspberry pi zero, and concludes that adopting ABE in the IoT is indeed feasible

    KALwEN: A New Practical and Interoperable Key Management Scheme for Body Sensor Networks

    Get PDF
    Key management is the pillar of a security architecture. Body sensor networks(BSNs) pose several challenges -- some inherited from wireless sensor networks(WSNs), some unique to themselves -- that require a new key management scheme to be tailor-made. The challenge is taken on, and the result is KALwEN, a new lightweight scheme that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when bootstrapping or extending a network. One of KALwEN's key features is that it allows sensor devices from different manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other. KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports global broadcast, local broadcast and neighbor-to-neighbor unicast, while preserving past key secrecry and future key secrecy. The fact that the cryptographic protocols of KALwEN have been formally verified also makes a convincing case
    corecore