762 research outputs found

    Lazy Abstraction-Based Controller Synthesis

    Full text link
    We present lazy abstraction-based controller synthesis (ABCS) for continuous-time nonlinear dynamical systems against reach-avoid and safety specifications. State-of-the-art multi-layered ABCS pre-computes multiple finite-state abstractions of varying granularity and applies reactive synthesis to the coarsest abstraction whenever feasible, but adaptively considers finer abstractions when necessary. Lazy ABCS improves this technique by constructing abstractions on demand. Our insight is that the abstract transition relation only needs to be locally computed for a small set of frontier states at the precision currently required by the synthesis algorithm. We show that lazy ABCS can significantly outperform previous multi-layered ABCS algorithms: on standard benchmarks, lazy ABCS is more than 4 times faster

    Control design for hybrid systems with TuLiP: The Temporal Logic Planning toolbox

    Get PDF
    This tutorial describes TuLiP, the Temporal Logic Planning toolbox, a collection of tools for designing controllers for hybrid systems from specifications in temporal logic. The tools support a workflow that starts from a description of desired behavior, and of the system to be controlled. The system can have discrete state, or be a hybrid dynamical system with a mixed discrete and continuous state space. The desired behavior can be represented with temporal logic and discrete transition systems. The system description can include uncontrollable variables that take discrete or continuous values, and represent disturbances and other environmental factors that affect the dynamics, as well as communication signals that affect controller decisions

    RULES BASED MODELING OF DISCRETE EVENT SYSTEMS WITH FAULTS AND THEIR DIAGNOSIS

    Get PDF
    Failure diagnosis in large and complex systems is a critical task. In the realm of discrete event systems, Sampath et al. proposed a language based failure diagnosis approach. They introduced the diagnosability for discrete event systems and gave a method for testing the diagnosability by first constructing a diagnoser for the system. The complexity of this method of testing diagnosability is exponential in the number of states of the system and doubly exponential in the number of failure types. In this thesis, we give an algorithm for testing diagnosability that does not construct a diagnoser for the system, and its complexity is of 4th order in the number of states of the system and linear in the number of the failure types. In this dissertation we also study diagnosis of discrete event systems (DESs) modeled in the rule-based modeling formalism introduced in [12] to model failure-prone systems. The results have been represented in [43]. An attractive feature of rule-based model is it\u27s compactness (size is polynomial in number of signals). A motivation for the work presented is to develop failure diagnosis techniques that are able to exploit this compactness. In this regard, we develop symbolic techniques for testing diagnosability and computing a diagnoser. Diagnosability test is shown to be an instance of 1st order temporal logic model-checking. An on-line algorithm for diagnosersynthesis is obtained by using predicates and predicate transformers. We demonstrate our approach by applying it to modeling and diagnosis of a part of the assembly-line. When the system is found to be not diagnosable, we use sensor refinement and sensor augmentation to make the system diagnosable. In this dissertation, a controller is also extracted from the maximally permissive supervisor for the purpose of implementing the control by selecting, when possible, only one controllable event from among the ones allowed by the supervisor for the assembly line in automaton models

    Correct-By-Construction Fault-Tolerant Control

    Full text link
    Correct-by-construction control synthesis methods refer to a collection of model-based techniques to algorithmically generate controllers/strategies that make the systems satisfy some formal specifications. Such techniques attract much attention as they provide formal guarantees on the correctness of cyber-physical systems, where corner cases may arise due to the interaction among different modules. The controllers synthesized through such methods, however, may still malfunction due to faults, such as physical component failures and unexpected operating conditions, which lead to a sudden change of the system model. In these cases, we want to guarantee that the performance of the faulty system degrades gracefully, and hence achieve fault tolerance. This thesis is about 1) incorporating fault detection and detectability analysis algorithms in correct-by-construction control synthesis, 2) formalizing the graceful degradation specification for fault tolerant systems with temporal logic, and 3) developing algorithms to synthesize correct-by-construction controllers that achieve such graceful degradation, with possible delay in the fault detection. In particular, two sets of approaches from the temporal logic planning domain, i.e., abstraction-based synthesis and optimization-based path planning, are considered. First, for abstraction-based approaches, we propose a recursive algorithm to reduce the fault tolerant controller synthesis problem into multiple small synthesis problems with simpler specifications. Such recursive reduction leverages the structure of the fault propagation and hence avoids the high complexity of solving the problem monolithically as one general temporal logic game. Furthermore, by exploring the structural properties in the specifications, we show that, even when the fault is detected with delay, the problem can be solved by a similar recursive algorithm without constructing the belief space. Secondly, optimization-based path planning is considered. The proposed approach leverages the recently developed temporal logic encodings and state-of-art mixed integer programming (MIP) solvers. The novelty of this work is to enhance the open-loop strategy obtained through solving the MIP so that it can react contingently to faults and disturbance. Finally, the control synthesis techniques developed for discrete state systems is shown to be applicable to continuous states systems. This is demonstrated by fuel cell thermal management application. Particularly, to apply the abstraction-based synthesis methods to complex systems such as the fuel cell thermal management system, structural properties (e.g., mixed monotonicity) of the system are explored and leveraged to ease abstraction computation, and techniques are developed to improve the scalability of synthesis process whenever the system has a large number of control actions.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155031/1/yliren_1.pd

    Safety Barrier Certificates for Stochastic Control Systems with Wireless Communication Networks

    Full text link
    This work is concerned with a formal approach for safety controller synthesis of stochastic control systems with both process and measurement noises while considering wireless communication networks between sensors, controllers, and actuators. The proposed scheme is based on control barrier certificates (CBC), which allows us to provide safety certifications for wirelessly-connected stochastic control systems. Despite the available literature on designing control barrier certificates, there has been unfortunately no consideration of wireless communication networks to capture potential packet losses and end-to-end delays, which is absolutely crucial in safety-critical real-world applications. In our proposed setting, the key objective is to construct a control barrier certificate together with a safety controller while providing a lower bound on the satisfaction probability of the safety property over a finite time horizon. We propose a systematic approach in the form of sum-of-squares optimization and matrix inequalities for the synthesis of CBC and its associated controller. We demonstrate the efficacy of our approach on a permanent magnet synchronous motor. For the application of automotive electric steering under a wireless communication network, we design a CBC together with a safety controller to maintain the electrical current of the motor in a safe set within a finite time horizon while providing a formal probabilistic guarantee
    corecore