1,259 research outputs found

    Computational Complexity of Synchronization under Regular Commutative Constraints

    Full text link
    Here we study the computational complexity of the constrained synchronization problem for the class of regular commutative constraint languages. Utilizing a vector representation of regular commutative constraint languages, we give a full classification of the computational complexity of the constraint synchronization problem. Depending on the constraint language, our problem becomes PSPACE-complete, NP-complete or polynomial time solvable. In addition, we derive a polynomial time decision procedure for the complexity of the constraint synchronization problem, given some constraint automaton accepting a commutative language as input.Comment: Published in COCOON 2020 (The 26th International Computing and Combinatorics Conference); 2nd version is update of the published version and 1st version; both contain a minor error, the assumption of maximality in the NP-c and PSPACE-c results (propositions 5 & 6) is missing, and of incomparability of the vectors in main theorem; fixed in this version. See (new) discussion after main theore

    Computing Majority with Triple Queries

    Full text link
    Consider a bin containing nn balls colored with two colors. In a kk-query, kk balls are selected by a questioner and the oracle's reply is related (depending on the computation model being considered) to the distribution of colors of the balls in this kk-tuple; however, the oracle never reveals the colors of the individual balls. Following a number of queries the questioner is said to determine the majority color if it can output a ball of the majority color if it exists, and can prove that there is no majority if it does not exist. We investigate two computation models (depending on the type of replies being allowed). We give algorithms to compute the minimum number of 3-queries which are needed so that the questioner can determine the majority color and provide tight and almost tight upper and lower bounds on the number of queries needed in each case.Comment: 22 pages, 1 figure, conference version to appear in proceedings of the 17th Annual International Computing and Combinatorics Conference (COCOON 2011

    Combinatorics on words in information security: Unavoidable regularities in the construction of multicollision attacks on iterated hash functions

    Full text link
    Classically in combinatorics on words one studies unavoidable regularities that appear in sufficiently long strings of symbols over a fixed size alphabet. In this paper we take another viewpoint and focus on combinatorial properties of long words in which the number of occurrences of any symbol is restritced by a fixed constant. We then demonstrate the connection of these properties to constructing multicollision attacks on so called generalized iterated hash functions.Comment: In Proceedings WORDS 2011, arXiv:1108.341

    Streaming and Query Once Space Complexity of Longest Increasing Subsequence

    Full text link
    Longest Increasing Subsequence (LIS) is a fundamental problem in combinatorics and computer science. Previously, there have been numerous works on both upper bounds and lower bounds of the time complexity of computing and approximating LIS, yet only a few on the equally important space complexity. In this paper, we further study the space complexity of computing and approximating LIS in various models. Specifically, we prove non-trivial space lower bounds in the following two models: (1) the adaptive query-once model or read-once branching programs, and (2) the streaming model where the order of streaming is different from the natural order. As far as we know, there are no previous works on the space complexity of LIS in these models. Besides the bounds, our work also leaves many intriguing open problems.Comment: This paper has been accepted to COCOON 202

    Approximating Weighted Duo-Preservation in Comparative Genomics

    Full text link
    Motivated by comparative genomics, Chen et al. [9] introduced the Maximum Duo-preservation String Mapping (MDSM) problem in which we are given two strings s1s_1 and s2s_2 from the same alphabet and the goal is to find a mapping π\pi between them so as to maximize the number of duos preserved. A duo is any two consecutive characters in a string and it is preserved in the mapping if its two consecutive characters in s1s_1 are mapped to same two consecutive characters in s2s_2. The MDSM problem is known to be NP-hard and there are approximation algorithms for this problem [3, 5, 13], but all of them consider only the "unweighted" version of the problem in the sense that a duo from s1s_1 is preserved by mapping to any same duo in s2s_2 regardless of their positions in the respective strings. However, it is well-desired in comparative genomics to find mappings that consider preserving duos that are "closer" to each other under some distance measure [19]. In this paper, we introduce a generalized version of the problem, called the Maximum-Weight Duo-preservation String Mapping (MWDSM) problem that captures both duos-preservation and duos-distance measures in the sense that mapping a duo from s1s_1 to each preserved duo in s2s_2 has a weight, indicating the "closeness" of the two duos. The objective of the MWDSM problem is to find a mapping so as to maximize the total weight of preserved duos. In this paper, we give a polynomial-time 6-approximation algorithm for this problem.Comment: Appeared in proceedings of the 23rd International Computing and Combinatorics Conference (COCOON 2017
    corecore