27,779 research outputs found

    Lower Bounds on the Bounded Coefficient Complexity of Bilinear Maps

    Get PDF
    We prove lower bounds of order nlog⁥nn\log n for both the problem to multiply polynomials of degree nn, and to divide polynomials with remainder, in the model of bounded coefficient arithmetic circuits over the complex numbers. These lower bounds are optimal up to order of magnitude. The proof uses a recent idea of R. Raz [Proc. 34th STOC 2002] proposed for matrix multiplication. It reduces the linear problem to multiply a random circulant matrix with a vector to the bilinear problem of cyclic convolution. We treat the arising linear problem by extending J. Morgenstern's bound [J. ACM 20, pp. 305-306, 1973] in a unitarily invariant way. This establishes a new lower bound on the bounded coefficient complexity of linear forms in terms of the singular values of the corresponding matrix. In addition, we extend these lower bounds for linear and bilinear maps to a model of circuits that allows a restricted number of unbounded scalar multiplications.Comment: 19 page

    Statistically Motivated Second Order Pooling

    Get PDF
    Second-order pooling, a.k.a.~bilinear pooling, has proven effective for deep learning based visual recognition. However, the resulting second-order networks yield a final representation that is orders of magnitude larger than that of standard, first-order ones, making them memory-intensive and cumbersome to deploy. Here, we introduce a general, parametric compression strategy that can produce more compact representations than existing compression techniques, yet outperform both compressed and uncompressed second-order models. Our approach is motivated by a statistical analysis of the network's activations, relying on operations that lead to a Gaussian-distributed final representation, as inherently used by first-order deep networks. As evidenced by our experiments, this lets us outperform the state-of-the-art first-order and second-order models on several benchmark recognition datasets.Comment: Accepted to ECCV 2018. Camera ready version. 14 page, 5 figures, 3 table

    A generalized topological recursion for arbitrary ramification

    Full text link
    The Eynard-Orantin topological recursion relies on the geometry of a Riemann surface S and two meromorphic functions x and y on S. To formulate the recursion, one must assume that x has only simple ramification points. In this paper we propose a generalized topological recursion that is valid for x with arbitrary ramification. We justify our proposal by studying degenerations of Riemann surfaces. We check in various examples that our generalized recursion is compatible with invariance of the free energies under the transformation (x,y) -> (y,x), where either x or y (or both) have higher order ramification, and that it satisfies some of the most important properties of the original recursion. Along the way, we show that invariance under (x,y) -> (y,x) is in fact more subtle than expected; we show that there exists a number of counter examples, already in the case of the original Eynard-Orantin recursion, that deserve further study.Comment: 26 pages, 2 figure

    Topological Optimization of the Evaluation of Finite Element Matrices

    Full text link
    We present a topological framework for finding low-flop algorithms for evaluating element stiffness matrices associated with multilinear forms for finite element methods posed over straight-sided affine domains. This framework relies on phrasing the computation on each element as the contraction of each collection of reference element tensors with an element-specific geometric tensor. We then present a new concept of complexity-reducing relations that serve as distance relations between these reference element tensors. This notion sets up a graph-theoretic context in which we may find an optimized algorithm by computing a minimum spanning tree. We present experimental results for some common multilinear forms showing significant reductions in operation count and also discuss some efficient algorithms for building the graph we use for the optimization
    • 

    corecore