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Abstract. Second-order pooling, a.k.a. bilinear pooling, has proven ef-
fective for deep learning based visual recognition. However, the result-
ing second-order networks yield a final representation that is orders of
magnitude larger than that of standard, first-order ones, making them
memory-intensive and cumbersome to deploy. Here, we introduce a gen-
eral, parametric compression strategy that can produce more compact
representations than existing compression techniques, yet outperform
both compressed and uncompressed second-order models. Our approach
is motivated by a statistical analysis of the network’s activations, relying
on operations that lead to a Gaussian-distributed final representation,
as inherently used by first-order deep networks. As evidenced by our
experiments, this lets us outperform the state-of-the-art first-order and
second-order models on several benchmark recognition datasets.

Keywords: Second-order descriptors, convolutional neural networks,
image classification

1 Introduction

Visual recognition is one of the fundamental goals of computer vision. Over
the years, second-order representations, i.e., region covariance descriptors, have
proven more effective than their first-order counterparts [2, 11, 31, 38] for many
tasks, such as pedestrian detection [46], material recognition [9] and seman-
tic segmentation [6]. More recently, convolutional neural networks (CNNs) have
achieved unprecedented performance in a wide range of image classification prob-
lems [30, 20, 22]. Inspired by the past developments in handcrafted features, sev-
eral works have proposed to replace the fully-connected layers with second-order
pooling strategies, essentially utilizing covariance descriptors within CNNs [36,
24, 32, 34, 35, 29]. This has led to second-order or bilinear CNNs whose repre-
sentation power surpasses that of standard, first-order ones.

One drawback of these second-order CNNs is that vectorizing the covari-
ance descriptor to pass it to the classification layer, as done in [36, 24, 32, 34],
yields a vector representation that is orders of magnitude larger than that of
first-order CNNs, thus making these networks memory-intensive and subject to
overfitting. While compression strategies have been proposed [13, 27], they are
either nonparametric [13], thus limiting the representation power of the network,
⋆ This work was supported in part by the Swiss National Science Foundation.
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Fig. 1. Statistically-Motivated Second-Order (SMSO) pooling. Top: Our para-
metric compression strategy vectorizes a covariance matrix and normalizes the resulting
vector. Bottom: Each of these operations yields a well-defined distribution of the data,
thus resulting in a consistent framework, whose final representation follows a Gaussian
distribution, as state-of-the-art first-order deep networks.

or designed for a specific classification formalism [27], thus restricting their ap-
plicability.

In this paper, we introduce a general, parametric compression strategy for
second-order CNNs. As evidenced by our results, our strategy can produce more
compact representations than [13, 27], with as little as 10% of their parameters,
yet significantly outperforming these methods, as well as the state-of-the-art
first-order [20, 42] and uncompressed second-order pooling strategies [36, 24, 32,
34].

Unlike most deep learning architectures, our approach is motivated by a
statistical analysis of the network’s activations. In particular, we build upon the
observation that first-order networks inherently exploit Gaussian distributions
for their feature representations. This is due to the fact that, as discussed in [15,
23] and explained by the Central Limit Theorem, the outputs of linear layers, and
thus of operations such as global average pooling, follow a multivariate Gaussian
distribution. The empirical success of such Gaussian distributions of feature
representations in first-order deep networks motivated us to design a compression
strategy such that the final representation also satisfies this property.

To this end, as illustrated by Fig. 1, we exploit the fact that the covariance
matrices resulting from second-order pooling follow a Wishart distribution [26].
We then introduce a parametric vectorization (PV) layer, which compresses the
second-order information while increasing the model capacity by relying on train-
able parameters. We show that our PV layer outputs a vector whose elements
follow χ2 distributions, which motivates the use of a square-root normaliza-
tion that makes the distribution of the resulting representation converge to a
Gaussian, as verified empirically in Section 3.4. These operations rely on ba-
sic algebraic transformations, and can thus be easily integrated into any deep
architecture and optimized with standard backpropagation.

We demonstrate the benefits of our statistically-motivated second-order (SMSO)
pooling strategy on standard benchmark datasets for second-order models, in-
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cluding the Describing Texture Dataset (DTD) [9], the Material in Context
(MINC) dataset [5] and the scene recognition MIT-Indoor dataset [40]. Our ap-
proach consistently outperforms the state-of-the-art second-order pooling strate-
gies, independently of the base network used (i.e., VGG-D [42] or ResNet-
50 [20]), as well as these base networks themselves. Our code is publicly available
at https://github.com/kcyu2014/smsop.

2 Related Work

Visual recognition has a long history in computer vision. Here, we focus on the
methods that, like us, make use of representations based on second-order in-
formation to tackle this task. In this context, the region covariance descriptors
(RCDs) of [46] constitute the first attempt at leveraging second-order informa-
tion. Similarly, Fisher Vectors [2] also effectively exploit second-order statis-
tics. Following this success, several metrics have been proposed to compare
RCDs [3, 37, 39, 43], and they have been used in various classification frame-
works, such as boosting [12], kernel Support Vector Machines [47], sparse cod-
ing [7, 16, 49] and dictionary learning [44, 19, 33, 18]. In all these works, however,
while the classifier was trained, no learning was involved in the computation of
the RCDs.

To the best of our knowledge, [17], and its extension to the log-Euclidean met-
ric [21], can be thought of as the first attempts to learn RCDs. This, however,
was achieved by reducing the dimensionality of input RCDs via a single transfor-
mation, which has limited learning capacity. In [22], the framework of [17] was
extended to learning multiple transformations of input RCDs. Nevertheless, this
approach still relied on RCDs as input. The idea of incorporating second-order
descriptors in a deep, end-to-end learning paradigm was introduced concurrently
in [24] and [36]. The former introduced the DeepO2P operation, consisting of
computing the covariance matrix of convolutional features. The latter proposed
the slightly more general idea of bilinear pooling, which, in principle, can exploit
inner products between the features of corresponding spatial locations from dif-
ferent layers in the network. In practice, however, the use of cross-layer bilinear
features does not bring a significant boost in representation power [13, 34], and
bilinear pooling is therefore typically achieved by computing the inner products
of the features within a single layer, thus becoming essentially equivalent to
second-order pooling.

A key to the success of second-order pooling is the normalization, or trans-
formation, of the second-order representation. In [24], the matrix logarithm was
employed, motivated by the fact that covariance matrices lie on a Riemannian
manifold, and that this operation maps a matrix to its tangent space, thus pro-
ducing a Euclidean representation. By contrast, [36] was rather inspired by pre-
vious normalization strategies for handcrafted features [2, 38], and proposed to
perform an element-wise square-root and ℓ2 normalization after vectorization of
the matrix representation. More recently, [32, 34] introduced a matrix square-
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root normalization strategy that was shown to outperform the other transfor-
mation techniques.

All the above-mentioned methods simply vectorize the second-order repre-
sentation, i.e., covariance matrix. As such, they produce a final representation
whose size scales quadratically with the number of channels in the last convo-
lutional feature map, thus being typically orders of magnitude larger than the
final representation of first-order CNNs. To reduce the resulting memory cost
and parameter explosion, several approaches have been proposed to compress
second-order representations while preserving their discriminative power. The
first attempt at compression was achieved by [13], which introduced two strate-
gies, based on the idea of random projection, to map the covariance matrices to
vectors. These projections, however, were not learned, thus not increasing the
capacity of the network and producing at best the same accuracy as the bilinear
CNN of [36]. In [27], a parametric strategy was employed to reduce the dimen-
sionality of the bilinear features. While effective, this strategy was specifically
designed to be incorporated in a bilinear Support Vector Machine.

By contrast, here, we introduce a parametric compression approach that can
be incorporated into any standard deep learning framework. Furthermore, our
strategy is statistically motivated so as to yield a final representation whose
distribution is of the same type as that inherently used by first-order deep net-
works. As evidenced by our experiments, our method can produce more compact
representations than existing compression techniques, yet outperforms the state-
of-the-art first-order and second-order models.

Note that higher-order information has also been exploited in the past [10,
28]. While promising, we believe that developing statistically-motivated pooling
strategies for such higher-order information goes beyond the scope of this paper.

3 Methodology

In this section, we first introduce our second-order pooling strategy while ex-
plaining the statistical motivation behind it. We then provide an alternative
interpretation of our approach yielding a lower complexity, study and display
the empirical distributions of our network’s representations, and finally discuss
the relation of our model to the recent second-order pooling techniques.

3.1 SMSO Pooling

Our goal is to design a general, parametric compression strategy for second-order
deep networks. Furthermore, inspired by the fact that first-order deep networks
inherently make use of Gaussian distributions for their feature representations,
we reason about the statistical distribution of the network’s intermediate rep-
resentations so as to produce a final representation that is also Gaussian. Note
that, while we introduce our SMSO pooling strategy within a CNN formalism,
it applies to any method relying on second-order representations.
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Formally, let X ∈ Rn×c be a data matrix, consisting of n sample vectors of
dimension c. For example, in the context of CNNs, X contains the activations
of the last convolutional layer, with n = w × h corresponding to the spatial
resolution of the corresponding feature map. Here, we assume xi ∈ Rc to follow a
multivariate Gaussian distribution Nc(µ,Σ). In practice, as discussed in [15, 23]
and explained by the Central Limit Theorem, this can be achieved by using a
linear activation after the last convolutional layer, potentially followed by batch
normalization [23].
Covariance Computation. Given the data matrix X, traditional second-
order pooling consists of computing a covariance matrix Y ∈ Rc×c as

Y =
1

n− 1

n∑
i=1

(xi − µ)(xi − µ)T =
1

n− 1
X̃T X̃ , (1)

where X̃ denotes the mean-subtracted data matrix.
The following definition, see, e.g., [26], determines the distribution of Y.

Definition 1. If the elements xi ∈ Rc of a data matrix X ∈ Rn×c follow a zero
mean multivariate Gaussian distribution xi ∼ Nc(0,Σ), then the covariance
matrix Y of X is said to follow a Wishart distribution, denoted by

Y = XTX ∼ Wc(Σ, n) . (2)

Note that, in the bilinear CNN [36], the mean is typically not subtracted
from the data. As such, the corresponding bilinear matrix follows a form of
non-central Wishart distribution [25].
Second-order Feature Compression. The standard way to use a second-
order representation is to simply vectorize it [36, 24], potentially after some
form of normalization [34, 32]. This, however, can yield very high-dimensional
vectors that are cumbersome to deal with in practice. To avoid this, motivated
by [13, 27], we propose to compress the second-order representation during vec-
torization. Here, we introduce a simple, yet effective, compression technique that,
in contrast with [13], is parametric, and, as opposed to [27], amenable to general
classifiers.

Specifically, we develop a parametric vectorization (PV) layer, which relies
on trainable weights W ∈ Rc×p, with p the dimension of the resulting vector.
Each dimension j of the vector z output by this PV layer can be expressed as

zj = wT
j Ywj , (3)

where wj is a column of W.
The distribution of each dimension zj is defined by the following theorem.

Theorem 1 (Theorem 5.6 in [26]). If Y ∈ Rc×c follows a Wishart distribu-
tion Wc(Σ, n), and w ∈ Rc and w ̸= 0, then

z =
wTYw

wTΣw
(4)

follows a χ2 distribution with degree of freedom n, i.e., z ∼ χ2
n.
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From this theorem, we can see that each output dimension of our PV layer
follows a scaled χ2 distribution γχ2

n, where γ = wT
j Σwj , with Σ the covariance

matrix of the original multivariate Gaussian distribution.
Transformation and normalization. As shown above, each dimension of
our current vector representation follows a χ2 distribution. However, as discussed
above, first-order deep networks inherently exploit Gaussian distributions for
their feature representations. To make our final representation also satisfy this
property, we rely on the following theorem.

Theorem 2 ([50]). If z ∼ χ2
n with degree freedom n, then

z′ =
√
2z (5)

converges to a Gaussian distribution with mean
√
2n− 1 and standard deviation

σ = 1 when n is large, i.e., z′ ∼ N (
√
2n− 1, 1).

Following this theorem, we therefore define our normalization as the transfor-
mation

z′j =
√
αzj −

√
2n− 1 , (6)

for each dimension j, where we set α = 2/(wT
j Σwj) to correspond to Theorem 2,

while accounting for the factor γ arising from our parametric vectorization above.
Note that other transformations, such as log(z) and (z/n)1/3, are known to also
converge to Gaussian distributions as n increases [4, 50]. We show that these
operations yield similar results to the one above in Section 4.4.

Note that, according to Theorem 2, the mean and variance of the result-
ing Gaussian distribution are determined by the degree of freedom n, which, in
our case, corresponds to the number of samples used to compute the covariance
matrix in Eq. 1. Such pre-determined values, however, might limit the discrim-
inative power of the resulting representation. To tackle this, we further rely on
trainable scale and bias parameters, yielding a final representation

z′′j = βj + γjz
′
j , (7)

where γj > 0, βj ∈ R. Note that this transformation is also exploited by batch
normalization. However, here, we do not need to compute the batch statistics
during training, since Theorem 2 tells us that the batches follow a consistent
distribution.

Altogether, our SMSO pooling strategy, defined by the operations discussed
above, yields a p-dimensional vector. This representation can then be passed to
a classifier. It can easily be verified that the above-mentioned operations are
differentiable, and the resulting deep network can thus be trained end-to-end.

3.2 Alternative Computation
Here, we derive an equivalent way to perform our SMSO pooling, with a lower
complexity when p is small, as shown in the supplementary material. Note, how-
ever, that our statistical reasoning is much clearer for the derivation of Section 3.1
and was what motivated our approach.
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To derive the alternative, we note that

1√
α
z′j =

√
wT

j Ywj (8)

=

√√√√wT
j

(
n∑

i=1

(xi − µ)(xi − µ)T

)
wj (9)

=

√√√√ n∑
i=1

(
wT

j (xi − µ)
)
((xi − µ)Twj) (10)

=

√√√√ n∑
i=1

(wT
j x̃i)2 , (11)

where x̃i = xi − µ.
So, in essence, given X, z′ can be computed by performing a 1×1 convolution,

with weights shaped as (1, 1, c, p) and without bias, followed by a global ℓ2
pooling operation, and a scaling by the constant

√
α. Note that ℓ2 pooling was

introduced several years ago [41], but has been mostly ignored in the recent deep
learning advances. By contrast, feature reduction with 1×1 convolutions is widely
utilized in first-order network designs [45, 20]. In essence, this mathematically
equivalent formulation shows that our second-order compression strategy can be
achieved without explicitly computing covariance matrices. Yet, our statistical
analysis based on these covariance matrices remains valid.

3.3 Relation to Other Methods

In this section, we discuss the connections between our method and the other
recent second-order pooling strategies in CNNs. In the supplementary material,
we compare the computational complexity of different second-order methods
with that of ours.
Normalization. Bilinear pooling (BP) [36] also proposed to make use of a
square-root as normalization operation. An important difference with our ap-
proach, however, is that BP directly vectorizes the matrix representation Y. It
is easy to see that the diagonal elements of Y follow a χ2 distribution, e.g., by
taking w in Theorem 1 to be a vector with a single value 1 and the other values 0.
Therefore, after normalization, some of the dimensions of the BP representation
also follow a Gaussian distribution. However, the off-diagonal elements follow a
variance-gamma distribution, and, after square-root normalization, will not be
Gaussian, thus making the different dimensions of the final representation follow
inconsistent distributions.

In [24] and [32], normalization was performed on the matrix Y directly, via a
matrix logarithm and a matrix power normalization, respectively. As such, it is
difficult to understand what distribution the elements of the final representation,
obtained by standard vectorization, follow.
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(a) Input: BN feature (b) PV feature (d) VGG-D FC2 representation(c) Output: transformed PV Feature

SMSO Pooling

Fig. 2. Histograms of SMSO intermediate feature vectors. We plot the dis-
tribution of (a) the initial features X, (b) the features after our PV layer z, (c) the
final representation z′′ and, for comparison, (d) first-order features after the last fully-
connected layer in VGG-D [42]. Note that, as discussed in the text, these empirical
distributions match the theoretical ones derived in Section 3.1, and our final represen-
tation does exploit the same type of distribution as first-order networks.

Compression. The compact bilinear pooling (CBP) of [13] exploits a com-
pression scheme that has a form similar to ours in Eq. 3. However, in [13], the
projection vectors wj are random but fixed. Making them trainable, as in our
PV layer, increases the capacity of our model, and, as shown in Section 4, allows
us to significantly outperform CBP.

In [27], a model is developed specifically for a max-margin bilinear classifier.
The parameter matrix of this classifier is approximated by a low-rank factoriza-
tion, which translates to projecting the initial features to a lower-dimensional
representation. As with our alternative formulation of Section 3.2, the resulting
bilinear classifier can be obtained without having to explicitly compute Y. This
classifier is formulated in terms of quantities of the form ∥UTXi∥2F , where U
is a trainable low-rank weight matrix. In essence, this corresponds to removing
the square-root operation from Eq. 11 and summing over all dimensions j. By
contrast, our representation, ignoring the scale and bias of Eq. 7, is passed to a
separate classification layer that computes a linear combination of the different
dimensions with trainable weights, thus increasing the capacity of our model.

3.4 Empirical distributions of SMSO pooling

Our SMSO pooling strategy was motivated by considering the distribution of the
representation at various stages in the network. Here, we study the empirical dis-
tributions of these features using the MINC dataset, discussed in Section 4, and
with a model based on VGG-D. To this end, in Fig. 2, we provide a visualization
of the distributions after the initial batch normalization (i.e., before computing
the covariance matrix, see Section 4.1 for details), after our PV layer, and af-
ter square-root transformation with trainable scaling and bias. Specifically, for
the initial features, because visualizing a Gaussian distribution in hundreds of
dimensions is not feasible, we plot the distribution along the first 2 principal
components. For our representations, where each dimension follows an indepen-
dent Gaussian, we randomly select four dimensions and plot stacked histograms.
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As expected from the theory, the initial features are close to Gaussian, and the
features after our PV layer therefore follow a long-tailed χ2 distribution. The
final features, after square-root normalization, scaling and bias, are much less
skewed, and thus much closer to a Gaussian distribution, thus matching the type
of distribution that the final representations of state-of-the-art deep networks fol-
low, as shown in Fig. 2(d). To further verify this, we conducted a Shapiro-Wilk
test on the final representation. This resulted in a p-value of 0.19 > 0.05, which
means that the Gaussian assumption is not rejected, sustaining our claim.

4 Experiments

Here, we first provide implementation details and introduce the baseline models.
We then compare our approach to these baselines on four standard benchmark
datasets, and provide an ablation study of our framework.

4.1 Implementation Details

We evaluate our method on two popular network architectures: the VGG-D net-
work of [42] (a.k.a. VGG-16) and the ResNet-50 of [20]. For all second-order
models discussed below, i.e., ours and the baselines, we remove all the fully-
connected layers and the last max pooling layer from VGG-D, that is, we trun-
cate the model after the ReLU activation following conv5-3. For ResNet-50, we
remove the last global average pooling layer and take our initial features from
the last residual block. As in [32], we add a 1× 1 convolutional layer to project
the initial features to c = 256 for all the experiments. Note that this is a linear
layer, and thus makes the resulting features satisfy our Gaussian assumption.

Following common practice [13, 27, 36, 32], we rely on weights pre-trained
on ImageNet and use stochastic gradient descent with an initial learning rate 10
times smaller than the one used to learn from scratch, i.e., 0.001 for VGG-D and
0.01 for ResNet-50. We then divide this weight by 10 when the validation loss has
stopped decreasing for 8 epochs. We initialize the weights of the new layers, i.e.,
the 1× 1 convolution, the PV layer and the classifier, with the strategy of [14],
i.e., random values drawn from a Gaussian distribution. We implemented our
approach using Keras [8] with TensorFlow [1] as backend.

4.2 Baseline Models

We now describe the different baseline models that we compare our approach
with. Note that the classifier is defined as a k-way softmax layer for all these
models, as for ours, except for low-rank bilinear pooling, which was specifically
designed to make use of a low-rank hinge loss.
Original model: This refers to the original, first-order, models, i.e., either
VGG-D or ResNet-50, pre-trained on ImageNet and fine-tuned on the new data.
Other than replacing the 1000-way ImageNet classification layer with a k-way
one, we keep the original model settings described in [42] and [20], respectively.
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Bilinear Pooling (BP) [36]: This corresponds to the original, uncompressed
bilinear pooling strategy, with signed square-root and ℓ2 normalization after
vanilla vectorization. In this case, we set c = 512, as in the original paper, as
the feature dimension before computing the second-order representation. If the
original feature dimension does not match this value, i.e., with ResNet-50, we
make use of an additional 1× 1 convolutional layer. Note that we observed that
using either 512 or 256 as feature dimension made virtually no difference on the
results. We therefore used c = 512, which matches the original paper.
DeepO2P [24]: This refers to the original, uncompressed covariance-based
model, with matrix logarithm and vanilla vectorization. Again, as in the original
paper, we set c = 512 as the feature dimension before computing the covariance
matrix, by using an additional 1× 1 convolutional layer when necessary.
Matrix Power Normalization (MPN) [32]: This model relies on a matrix
square-root operation acting on the second-order representation. Following the
original paper, we set c = 256 by making use of an additional 1×1 convolutional
layer before second-order pooling. Note that the improved bilinear pooling of [34]
has the same structure as MPN, and we do not report it as a separate baseline.
Compact bilinear pooling (CBP) [13]: We report the results of both
versions of CBP: the Random Maclaurin (RM) one and the Tensor Sketch (TS)
one. For both versions, we set the projection dimension to d = 8, 192, which
was shown to achieve the same accuracy as BP, i.e., the best accuracy reported
in [13]. As in the original paper, we apply the same normalization as BP [36].
Low rank bilinear pooling (LRBP) [27]: This corresponds to the com-
pression method dedicated to the bilinear SVM classifier. Following [27], we set
the projection dimension to m = 100 and its rank to r = 8, and initialize the
dimensionality reduction layer using the SVD of the Gram matrix computed
from the entire validation set. Following the authors’ implementation, we apply
a scaled square-root with factor 2× 105 after the conv5-3 ReLU, which seems to
prevent the model from diverging. Furthermore, we found that training LRBP
from the weights of BP fine-tuned on each dataset also helped convergence.

4.3 Comparison to the Baselines

Let us now compare the results of our model with those of the baselines described
in Section 4.2. To this end, we make use of four diverse benchmark image classifi-
cation datasets, thus showing the versatility of our approach. These datasets are
the Describing Texture Dataset (DTD) [9] for texture recognition, the challeng-
ing Material In Context (MINC-2500) dataset [5] for large-scale material recog-
nition in the wild, the MIT-Indoor dataset [40] for indoor scene understanding
and the Caltech-UCSD Bird (CUB) dataset [48] for fine-grained classification.
DTD contains 47 classes for a total of 5,640 images, mostly capturing the texture
itself, with limited surrounding background. By contrast, MINC-2500, consisting
of 57,500 images of 23 classes, depicts materials in their real-world environment,
thus containing strong background information and making it more challeng-
ing. MIT-Indoor contains 15,620 images of 67 different indoor scenes, and, with
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Fig. 3. Sample images from DTD, MINC-2500, MIT-Indoor and CUB.

Model name Feature dim. # param. DTD [9] MIT [40] MINC [5] CUB [48]
VGG-D [42] 4,096 119.64M 60.11 64.51 73.01 66.12
BP [36] 2.6× 105 3.015M 67.50 77.55 74.50 81.02
MPN [32] 32, 896 0.752M 68.01 76.49 76.24 84.10
DeepO2P [24] 2.6× 105 3.015M 66.07 72.35 69.29 -

CBP-TS [13] 8,192 0.189M 67.71 76.83 73.28 84.00
CBP-RM [13] 8,192 0.189M 63.24 73.89 73.54 83.86
LRBP [27] 100 0.068M 65.80 73.59 69.10 84.21

SMSO (Ours) 64 0.013M 68.18 75.37 74.18 82.66
SMSO (Ours) 2,048 0.057M 69.26 79.45 78.00 85.01

Table 1. Comparison of VGG-D based models. We report the top 1 classifica-
tion accuracy (in %) of the original VGG-D model, uncompressed second-order models
with different normalization strategies (BP, DeepO2P, MPN), second-order compres-
sion methods (CBP-TS, CBP-RM, LRBP), and our approach (SMSO) with different
PV dimensions. Note that our approach significantly outperforms all the baselines de-
spite a more compact final representation (Feature dim.) and much fewer parameters
(# param is the number of trainable parameters after the last convolutional layer).

DTD, has often been used to demonstrate the discriminative power of second-
order representations. The CUB dataset contains 11,788 images of 200 different
bird species. In Fig. 3, we provide a few samples from each dataset. For our
experiments, we make use of the standard train-test splits released with these
datasets. For DTD, MIT-Indoor and CUB, we define the input size as 448× 448
for all the experiments. For the large-scale MINC-2500 dataset, we use 224×224
images for all models to speed up training. Note that a larger input size could
potentially result in higher accuracies [5]. For all datasets and all models, we use
the same data augmentation strategy as in [36, 34].
Experiments with VGG-D. We first discuss the results obtained with the
VGG-D architecture as base model. These results are reported in Table 1 for
all models and all datasets. In short, our SMSO framework with PV dimension
p = 2, 048 outperforms all the baselines by a significant margin on all three
datasets. In particular, our accuracy is 7% to 19% higher than the original VGG-
D, with much fewer parameters, thus showing the benefits of exploiting second-
order features. MPN is the best-performing baseline, but, besides the fact that
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DTD MINC-2500

Fig. 4. Training and validation loss curves. We plot the training (dashed) and
validation (solid) loss values as a function of the number of training epochs for our
SMSO pooling strategy (orange), BP (green) and MPN (blue) on DTD (a) and MINC-
2500 (b). Our models clearly converge faster than BP, and tend to be more stable than
MPN, particularly on the smaller-scale DTD dataset.

we consistently outperform it, has a much higher computational complexity and
run time, as shown in the supplementary material. The second-order compression
methods (CBP and LRBP) underperform the uncompressed models on average.
By contrast, even with p = 64, we outperform most baselines, with a model that
corresponds to 10% of the parameters of the most compact baseline.

In Fig. 4, we compare the training and validation loss curves of our approach
with those of the best-performing baselines, BP and MPN, on DTD and MINC.
Note that our model converges much faster than BP and tends to be more stable
than MPN, particularly on DTD. This, we believe, is due to the fact that we rely
on basic algebraic operations, instead of the eigenvalue decomposition involved
in MPN whose gradient can be difficult to compute, particularly in the presence
of small or equal eigenvalues [24].

During these VGG-D based experiments, we have observed that, in practice,
LRBP was difficult to train, being very sensitive to the learning rate, which we
had to manually adapt throughout training. Because of this, and the fact that
LRBP yields lower accuracy than uncompressed models, we do not include this
baseline in the remaining experiments. We also exclude DeepO2P from the next
experiments, because of its consistently lower accuracy.

Experiments with ResNet-50. To further show the generality of our ap-
proach, we make use of the more recent, very deep ResNet-50 [20] architecture
as base network. Table 2 provides the results of our SMSO framework with
p = 64 and p = 2, 048, and of the baselines. In essence, the conclusions remain
unchanged; we outperform all the baselines for p = 2, 048. Note that, here, how-
ever, the second-order baselines typically do not even outperform the original
ResNet-50, whose results are significantly higher than the VGG-D ones. By con-
trast, our model is able to leverage this improvement of the base model and to
further increase its accuracy by appropriately exploiting second-order features.
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Model name Feature dim. # param. DTD [9] MIT [40] MINC [5] CUB [48]
ResNet-50 [20] 2,048 4K 71.45 76.45 79.12 74.51
BP [36] 32, 896 752K 69.37 68.35 79.05 82.70
MPN [32] 32, 896 752K 71.10 72.12 79.83 85.43

CBP-TS [13] 8,192 189K 65.30 72.60 75.91 77.35
CBP-RM [13] 8,192 189K 62.35 67.81 74.15 -

SMSO (Ours) 64 13K 71.03 76.31 79.17 81.98
SMSO (Ours) 2,048 57K 72.51 79.68 81.33 85.77

Table 2. Comparison of ResNet-50 based models. We report the top 1 classi-
fication accuracy (in %) of the original ResNet-50 model, uncompressed second-order
models with different normalization strategies (BP, MPN), second-order compression
methods (CBP-TS, CBP-RM), and our approach (SMSO). Note that, as in the VGG-D
case, our model outperforms all the baselines, including the original ResNet-50, which
is not the case of most second-order baselines. It also yields much more compact models
than the second-order baselines. (# params. refers to the same quantity as in Table 1.)
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Fig. 5. Influence of the PV dimension p. We plot the top 1 accuracy as a function
of the value p in logarithmic scale on MIT (left), MINC (middle) and DTD (right). Note
that accuracy is quite stable over large ranges of p values, yielding as good results as
the best-performing compression baseline (CBP-TS) with as few as p = 64 dimensions,
corresponding to only 10% of the parameters of CBP-TS.

4.4 Ablation Study

We evaluate the influence of different components of our model on our results.
Influence of the PV dimension. In our experiments, we proposed to set
p = 2, 048 or p = 64. We now investigate the influence of this parameter on
our results. To this end, we vary p in the range [24, 213] by steps corresponding
to a factor 2. The curves for this experiment on the validation data of the
three datasets with VGG-D based models are provided in Fig. 5. Note that our
model is quite robust to the exact value of this parameter, with stable accuracies
outperforming the best compression baseline for each dataset over large ranges.
More importantly, even with p = 64, our model yields as good results as the
best compression method, CBP-TS, with only 10% of its parameters.
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Vec. Flatten PV PV
Trans. - - Sqrt Sqrt Sqrt - Sqrt Log 3

√

Norm. - - - β γ β, γ β, γ

Dist. Wn(Σ) χ2
n N (µ, 1) N (β, 1) N (µ, γ2) γχ2

n + β N (β, γ2)
Acc. 75.97 75.32 76.32 77.12 76.47 76.14 78.00 77.86 77.17
Table 3. Comparison of different final feature distributions. We report the
results of different combinations of vectorization (vec.), transformation (trans.) and
normalization (norm.) strategies, yielding different final feature distributions. Here,
µ =

√
2n− 1 from Theorem 2. Ultimately, these results show that bringing the data

back to a Gaussian distribution with a trainable scale and bias yields higher accuracies.

Comparison of different distributions and transformations. We con-
duct experiments to compare different final feature distributions on MINC-2500
with a VGG-D based model. The results are provided in Table 3. Without our
PV compression and without transformation or normalization, the resulting fea-
tures follow a Wishart distribution, yielding an accuracy of 75.97%, which is
comparable to BP [36]. Adding our PV layer p = 2, 048, but not using any
transformation or normalization, yields χ2-distributed features and an accuracy
similar to the previous one. This suggests that our parametric compression is
effective, since we obtain similar accuracy with much fewer parameters. Includ-
ing the square-root transformation, but without the additional scale and bias
of Eq. 7, increases the accuracy to 76.32%. Additionally learning the scale and
bias boosts the accuracy to 78.00%, thus showing empirically the benefits of
Gaussian-distributed features over other distributions.

In the last two columns of Table 3, we report the results of different transfor-
mations that bring the χ2-distributed features to a Gaussian distribution, i.e.,
the cubic-root and the element-wise logarithm. Note that these two transforma-
tions yield accuracies similar to those obtained with the square-root. More impor-
tantly, all transformations yield higher accuracies than not using any (76.14%),
which further evidences the benefits of Gaussian-distributed features.

5 Conclusion

We have introduced a general and parametric compression strategy for second-
order deep networks, motivated by a statistical analysis of the distribution of
the network’s intermediate representations. Our SMSO pooling strategy out-
performs the state-of-the-art first-order and second-order models, with higher
accuracies than other compression techniques for up to 90% parameter reduc-
tion. With a ResNet-50 base architecture, it is the only second-order model
to consistently outperform the original one. While Gaussian distributions have
proven effective here and for first-order models, there is no guarantee that they
are truly optimal. In the future, we will study if other transformations yielding
non-Gaussian distributions can help further improve second-order models.
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