9 research outputs found

    The operator approach to dynamic Strong Stackelberg Equilibria

    Get PDF
    The ISDG12-GTM2019 International Meeting on Game Theory: joint meeting of “12th International ISDG Workshop” and “13th International Conference on Game Theory and Management”International audienc

    Minimum Violation Control Synthesis on Cyber-Physical Systems under Attacks

    Full text link
    Cyber-physical systems are conducting increasingly complex tasks, which are often modeled using formal languages such as temporal logic. The system's ability to perform the required tasks can be curtailed by malicious adversaries that mount intelligent attacks. At present, however, synthesis in the presence of such attacks has received limited research attention. In particular, the problem of synthesizing a controller when the required specifications cannot be satisfied completely due to adversarial attacks has not been studied. In this paper, we focus on the minimum violation control synthesis problem under linear temporal logic constraints of a stochastic finite state discrete-time system with the presence of an adversary. A minimum violation control strategy is one that satisfies the most important tasks defined by the user while violating the less important ones. We model the interaction between the controller and adversary using a concurrent Stackelberg game and present a nonlinear programming problem to formulate and solve for the optimal control policy. To reduce the computation effort, we develop a heuristic algorithm that solves the problem efficiently and demonstrate our proposed approach using a numerical case study

    Computing Stackelberg Equilibria in Discounted Stochastic Games

    No full text
    Stackelberg games increasingly influence security policies deployed in real-world settings. Much of the work to date focuses on devising a fixed randomized strategy for the defender, accounting for an attacker who optimally responds to it. In practice, defense policies are often subject to constraints and vary over time, allowing an attacker to infer characteristics of future policies based on current observations. A defender must therefore account for an attacker's observation capabilities in devising a security policy. We show that this general modeling framework can be captured using stochastic Stackelberg games (SSGs), where a defender commits to a dynamic policy to which the attacker devises an optimal dynamic response. We then offer the following contributions. 1) We show that Markov stationary policies suffice in SSGs, 2) present a finite-time mixed-integer non-linear program for computing a Stackelberg equilibrium in SSGs, and 3) present a mixed-integer linear program to approximate it. 4) We illustrate our algorithms on a simple SSG representing an adversarial patrolling scenario, where we study the impact of attacker patience and risk aversion on optimal defense policies
    corecore