1,508 research outputs found

    Networked sensing systems for detecting people carrying radioactive material

    Get PDF
    he goal of the research described in this paper is to help prevent scenarios such as the following: a terrorist detonates a device that distributes radioactive material such as Cesium-137 or Cobalt-60 in an open space used for public sports events or demonstrations. This paper studies the efficacy of networks of static sensors on street lamps or similar infrastructures. This paper describes individual sensors, evaluates the benefits of networks of stationary sensors, and briefly discusses the potential value of integrated networks of wireless-equipped mobile security personnel with stationary radiation sensors and cameras. The paper presents mathematical analysis coupled with simulation results

    Graph-based, systems approach for detecting violent extremist radicalization trajectories and other latent behaviors, A

    Get PDF
    2017 Summer.Includes bibliographical references.The number and lethality of violent extremist plots motivated by the Salafi-jihadist ideology have been growing for nearly the last decade in both the U.S and Western Europe. While detecting the radicalization of violent extremists is a key component in preventing future terrorist attacks, it remains a significant challenge to law enforcement due to the issues of both scale and dynamics. Recent terrorist attack successes highlight the real possibility of missed signals from, or continued radicalization by, individuals whom the authorities had formerly investigated and even interviewed. Additionally, beyond considering just the behavioral dynamics of a person of interest is the need for investigators to consider the behaviors and activities of social ties vis-à-vis the person of interest. We undertake a fundamentally systems approach in addressing these challenges by investigating the need and feasibility of a radicalization detection system, a risk assessment assistance technology for law enforcement and intelligence agencies. The proposed system first mines public data and government databases for individuals who exhibit risk indicators for extremist violence, and then enables law enforcement to monitor those individuals at the scope and scale that is lawful, and account for the dynamic indicative behaviors of the individuals and their associates rigorously and automatically. In this thesis, we first identify the operational deficiencies of current law enforcement and intelligence agency efforts, investigate the environmental conditions and stakeholders most salient to the development and operation of the proposed system, and address both programmatic and technical risks with several initial mitigating strategies. We codify this large effort into a radicalization detection system framework. The main thrust of this effort is the investigation of the technological opportunities for the identification of individuals matching a radicalization pattern of behaviors in the proposed radicalization detection system. We frame our technical approach as a unique dynamic graph pattern matching problem, and develop a technology called INSiGHT (Investigative Search for Graph Trajectories) to help identify individuals or small groups with conforming subgraphs to a radicalization query pattern, and follow the match trajectories over time. INSiGHT is aimed at assisting law enforcement and intelligence agencies in monitoring and screening for those individuals whose behaviors indicate a significant risk for violence, and allow for the better prioritization of limited investigative resources. We demonstrated the performance of INSiGHT on a variety of datasets, to include small synthetic radicalization-specific data sets, a real behavioral dataset of time-stamped radicalization indicators of recent U.S. violent extremists, and a large, real-world BlogCatalog dataset serving as a proxy for the type of intelligence or law enforcement data networks that could be utilized to track the radicalization of violent extremists. We also extended INSiGHT by developing a non-combinatorial neighbor matching technique to enable analysts to maintain visibility of potential collective threats and conspiracies and account for the role close social ties have in an individual's radicalization. This enhancement was validated on small, synthetic radicalization-specific datasets as well as the large BlogCatalog dataset with real social network connections and tagging behaviors for over 80K accounts. The results showed that our algorithm returned whole and partial subgraph matches that enabled analysts to gain and maintain visibility on neighbors' activities. Overall, INSiGHT led to consistent, informed, and reliable assessments about those who pose a significant risk for some latent behavior in a variety of settings. Based upon these results, we maintain that INSiGHT is a feasible and useful supporting technology with the potential to optimize law enforcement investigative efforts and ultimately enable the prevention of individuals from carrying out extremist violence. Although the prime motivation of this research is the detection of violent extremist radicalization, we found that INSiGHT is applicable in detecting latent behaviors in other domains such as on-line student assessment and consumer analytics. This utility was demonstrated through experiments with real data. For on-line student assessment, we tested INSiGHT on a MOOC dataset of students and time-stamped on-line course activities to predict those students who persisted in the course. For consumer analytics, we tested the performance on a real, large proprietary consumer activities dataset from a home improvement retailer. Lastly, motivated by the desire to validate INSiGHT as a screening technology when ground truth is known, we developed a synthetic data generator of large population, time-stamped, individual-level consumer activities data consistent with an a priori project set designation (latent behavior). This contribution also sets the stage for future work in developing an analogous synthetic data generator for radicalization indicators to serve as a testbed for INSiGHT and other data mining algorithms

    Computing Optimal Mixed Strategies for Terrorist Plot Detection Games with the Consideration of Information Leakage

    Full text link
    The terrorist’s coordinated attack is becoming an increasing threat to western countries. By monitoring potential terrorists, security agencies are able to detect and destroy terrorist plots at their planning stage. Therefore, an optimal monitoring strategy for the domestic security agency becomes necessary. However, previous study about monitoring strategy generation fails to consider the information leakage, due to hackers and insider threat. Such leakage events may lead to failure of watching potential terrorists and destroying the plot, and cause a huge risk to public security. This paper makes two major contributions. Firstly, we develop a new Stackelberg game model for the security agency to generate optimal monitoring strategy with the consideration of information leakage. Secondly, we provide a double-oracle framework DO-TPDIL for calculation effectively. The experimental result shows that our approach can obtain robust strategies against information leakage with high feasibility and efficiency

    RIDA: Robust Intrusion Detection in Ad Hoc Networks

    Get PDF
    We focus on detecting intrusions in wireless ad hoc networks using the misuse detection technique. We allow for detection modules that periodically fail to detect attacks and also generate false positives. Combining theories of hypothesis testing and approximation algorithms, we develop a framework to counter different threats while minimizing the resource consumption. We obtain computationally simple optimal rules for aggregating and thereby minimizing the errors in the decisions of the nodes executing the intrusion detection software (IDS) modules. But, we show that the selection of the optimal set of nodes for executing the IDS is an NP-hard problem. We present a polynomial complexity selection algorithm that attains a guaranteeable approximation bound. We also modify this algorithm to allow for seamless operation in time varying topologies, and evaluate the efficacy of the approximation algorithm and its modifications using simulation. We identify a selection algorithm that attains a good balance between performance and complexity for attaining robust intrusion detection in ad hoc networks

    Designing the Game to Play: Optimizing Payoff Structure in Security Games

    Full text link
    Effective game-theoretic modeling of defender-attacker behavior is becoming increasingly important. In many domains, the defender functions not only as a player but also the designer of the game's payoff structure. We study Stackelberg Security Games where the defender, in addition to allocating defensive resources to protect targets from the attacker, can strategically manipulate the attacker's payoff under budget constraints in weighted L^p-norm form regarding the amount of change. Focusing on problems with weighted L^1-norm form constraint, we present (i) a mixed integer linear program-based algorithm with approximation guarantee; (ii) a branch-and-bound based algorithm with improved efficiency achieved by effective pruning; (iii) a polynomial time approximation scheme for a special but practical class of problems. In addition, we show that problems under budget constraints in L^0-norm form and weighted L^\infty-norm form can be solved in polynomial time. We provide an extensive experimental evaluation of our proposed algorithms

    Machine learning methods to detect money laundering in the bitcoin blockchain in the presence of label scarcity

    Get PDF
    Lorenz, J., Silva, M. I., Aparício, D., Ascensão, J. T., & Bizarro, P. (2020). Machine learning methods to detect money laundering in the bitcoin blockchain in the presence of label scarcity. In ICAIF 2020 - 1st ACM International Conference on AI in Finance (pp. 1-8). [3422549] (ICAIF 2020 - 1st ACM International Conference on AI in Finance). Association for Computing Machinery, Inc. https://doi.org/10.1145/3383455.3422549Every year, criminals launder billions of dollars acquired from serious felonies (e.g., terrorism, drug smuggling, or human trafficking), harming countless people and economies. Cryptocurrencies, in particular, have developed as a haven for money laundering activity. Machine Learning can be used to detect these illicit patterns. However, labels are so scarce that traditional supervised algorithms are inapplicable. Here, we address money laundering detection assuming minimal access to labels. First, we show that existing state-of-the-art solutions using unsupervised anomaly detection methods are inadequate to detect the illicit patterns in a real Bitcoin transaction dataset. Then, we show that our proposed active learning solution is capable of matching the performance of a fully supervised baseline by using just 5% of the labels. This solution mimics a typical real-life situation in which a limited number of labels can be acquired through manual annotation by experts.publishersversionpublishe
    corecore