616 research outputs found

    Weighted Diffeomorphic Density Matching with Applications to Thoracic Image Registration

    Full text link
    In this article we study the problem of thoracic image registration, in particular the estimation of complex anatomical deformations associated with the breathing cycle. Using the intimate link between the Riemannian geometry of the space of diffeomorphisms and the space of densities, we develop an image registration framework that incorporates both the fundamental law of conservation of mass as well as spatially varying tissue compressibility properties. By exploiting the geometrical structure, the resulting algorithm is computationally efficient, yet widely general.Comment: Accepted in Proceedings of the 5th MICCAI workshop on Mathematical Foundations of Computational Anatomy, Munich, Germany, 2015 (http://www-sop.inria.fr/asclepios/events/MFCA15/

    Diffeomorphic density registration

    Full text link
    In this book chapter we study the Riemannian Geometry of the density registration problem: Given two densities (not necessarily probability densities) defined on a smooth finite dimensional manifold find a diffeomorphism which transforms one to the other. This problem is motivated by the medical imaging application of tracking organ motion due to respiration in Thoracic CT imaging where the fundamental physical property of conservation of mass naturally leads to modeling CT attenuation as a density. We will study the intimate link between the Riemannian metrics on the space of diffeomorphisms and those on the space of densities. We finally develop novel computationally efficient algorithms and demonstrate there applicability for registering RCCT thoracic imaging.Comment: 23 pages, 6 Figures, Chapter for a Book on Medical Image Analysi

    Higher-Order Momentum Distributions and Locally Affine LDDMM Registration

    Full text link
    To achieve sparse parametrizations that allows intuitive analysis, we aim to represent deformation with a basis containing interpretable elements, and we wish to use elements that have the description capacity to represent the deformation compactly. To accomplish this, we introduce in this paper higher-order momentum distributions in the LDDMM registration framework. While the zeroth order moments previously used in LDDMM only describe local displacement, the first-order momenta that are proposed here represent a basis that allows local description of affine transformations and subsequent compact description of non-translational movement in a globally non-rigid deformation. The resulting representation contains directly interpretable information from both mathematical and modeling perspectives. We develop the mathematical construction of the registration framework with higher-order momenta, we show the implications for sparse image registration and deformation description, and we provide examples of how the parametrization enables registration with a very low number of parameters. The capacity and interpretability of the parametrization using higher-order momenta lead to natural modeling of articulated movement, and the method promises to be useful for quantifying ventricle expansion and progressing atrophy during Alzheimer's disease
    corecore