7 research outputs found

    Complexity and Algorithms for the Discrete Fr\'echet Distance Upper Bound with Imprecise Input

    Full text link
    We study the problem of computing the upper bound of the discrete Fr\'{e}chet distance for imprecise input, and prove that the problem is NP-hard. This solves an open problem posed in 2010 by Ahn \emph{et al}. If shortcuts are allowed, we show that the upper bound of the discrete Fr\'{e}chet distance with shortcuts for imprecise input can be computed in polynomial time and we present several efficient algorithms.Comment: 15 pages, 8 figure

    Delaunay triangulation of imprecise points in linear time after preprocessing

    Get PDF
    An assumption of nearly all algorithms in computational geometry is that the input points are given precisely, so it is interesting to ask what is the value of imprecise information about points. We show how to preprocess a set of disjoint unit disks in the plane in time so that if one point per disk is specified with precise coordinates, the Delaunay triangulation can be computed in linear time. From the Delaunay, one can obtain the Gabriel graph and a Euclidean minimum spanning tree; it is interesting to note the roles that these two structures play in our algorithm to quickly compute the Delaunay

    Computing Delaunay triangulation with imprecise input data

    No full text
    The key step in the construction of the Delaunay triangulation of a finite set of planar points is to establish correctly whether a given point of this set is inside oroutside the circle determined by any other three points. We address the problem of formulating the in-circle testwhen the coordinates of the planar points are given only up to a given precision, which is usually the case in practice. By modelling imprecise points as rectangles, and using the idea of partial disc, we construct a reliable in-circle test that provides the best possible Delaunay triangulation with the imprecise input data given by rectangles

    Large bichromatic point sets admit empty monochromatic 4-gons

    No full text
    We consider a variation of a problem stated by Erd˝os and Szekeres in 1935 about the existence of a number fES(k) such that any set S of at least fES(k) points in general position in the plane has a subset of k points that are the vertices of a convex k-gon. In our setting the points of S are colored, and we say that a (not necessarily convex) spanned polygon is monochromatic if all its vertices have the same color. Moreover, a polygon is called empty if it does not contain any points of S in its interior. We show that any bichromatic set of n ≥ 5044 points in R2 in general position determines at least one empty, monochromatic quadrilateral (and thus linearly many).Postprint (published version
    corecore