We study the problem of computing the upper bound of the discrete Fr\'{e}chet
distance for imprecise input, and prove that the problem is NP-hard. This
solves an open problem posed in 2010 by Ahn \emph{et al}. If shortcuts are
allowed, we show that the upper bound of the discrete Fr\'{e}chet distance with
shortcuts for imprecise input can be computed in polynomial time and we present
several efficient algorithms.Comment: 15 pages, 8 figure