3,033 research outputs found

    Running coupling expansion for the renormalized Ï•44\phi^4_4-trajectory from renormalization invariance

    Get PDF
    We formulate a renormalized running coupling expansion for the β\beta--function and the potential of the renormalized ϕ4\phi^4--trajectory on four dimensional Euclidean space-time. Renormalization invariance is used as a first principle. No reference is made to bare quantities. The expansion is proved to be finite to all orders of perturbation theory. The proof includes a large momentum bound on the connected free propagator amputated vertices.Comment: 14 pages LaTeX2e, typos and references correcte

    On the Power Series Expansion of the Reciprocal Gamma Function

    Full text link
    Using the reflection formula of the Gamma function, we derive a new formula for the Taylor coefficients of the reciprocal Gamma function. The new formula provides effective asymptotic values for the coefficients even for very small values of the indices. Both the sign oscillations and the leading order of growth are given.Comment: Corrected a sign in equation (3.21) due to a minor error in (3.19) where the fraction was inadvertently inverted. Now the rough approximation provides an elementary proof that the order of the reciprocal gamma function is 1 and that its type is maxima

    The Hypotheses on Expansion of Iterated Stratonovich Stochastic Integrals of Arbitrary Multiplicity and Their Partial Proof

    Full text link
    In this review article we collected more than ten theorems on expansions of iterated Ito and Stratonovich stochastic integrals, which have been formulated and proved by the author. These theorems open a new direction for study of iterated Ito and Stratonovich stochastic integrals. The expansions based on multiple and iterated Fourier-Legendre series as well as on multiple and iterated trigonomectic Fourier series converging in the mean and pointwise are presented in the article. Some of these theorems are connected with the iterated stochastic integrals of multiplicities 1 to 5. Also we consider two theorems on expansions of iterated Ito stochastic integrals of arbitrary multiplicity kk (k∈N)(k\in\mathbb{N}) based on generalized multiple Fourier series converging in the sense of norm in Hilbert space L2([t,T]k)L_2([t, T]^k) as well as two theorems on expansions of iterated Stratonovich stochastic integrals of arbitrary multiplicity kk (k∈N)(k\in\mathbb{N}) based on generalized iterated Fourier series converging pointwise. On the base of the presented theorems we formulate 3 hypotheses on expansions of iterated Stratonovich stochastic integrals of arbitrary multiplicity kk (k∈N)(k\in\mathbb{N}) based on generalized multiple Fourier series converging in the sense of norm in Hilbert space L2([t,T]k).L_2([t, T]^k). The mentioned iterated Stratonovich stochastic integrals are part of the Taylor-Stratonovich expansion. Moreover, the considered expansions from these 3 hypotheses contain only one operation of the limit transition and substantially simpler than their analogues for iterated Ito stochastic integrals. Therefore, the results of the article can be useful for the numerical integration of Ito stochastic differential equations. Also, the results of the article were reformulated in the form of theorems of the Wong-Zakai type for iterated Stratonovich stochastic integrals.Comment: 35 pages. Section 12 was added. arXiv admin note: text overlap with arXiv:1712.09516, arXiv:1712.08991, arXiv:1802.04844, arXiv:1801.00231, arXiv:1712.09746, arXiv:1801.0078

    Positivity of rational functions and their diagonals

    Get PDF
    The problem to decide whether a given rational function in several variables is positive, in the sense that all its Taylor coefficients are positive, goes back to Szeg\H{o} as well as Askey and Gasper, who inspired more recent work. It is well known that the diagonal coefficients of rational functions are DD-finite. This note is motivated by the observation that, for several of the rational functions whose positivity has received special attention, the diagonal terms in fact have arithmetic significance and arise from differential equations that have modular parametrization. In each of these cases, this allows us to conclude that the diagonal is positive. Further inspired by a result of Gillis, Reznick and Zeilberger, we investigate the relation between positivity of a rational function and the positivity of its diagonal.Comment: 16 page

    Mixed powers of generating functions

    Full text link
    Given an integer m>=1, let || || be a norm in R^{m+1} and let S denote the set of points with nonnegative coordinates in the unit sphere with respect to this norm. Consider for each 1<= j<= m a function f_j(z) that is analytic in an open neighborhood of the point z=0 in the complex plane and with possibly negative Taylor coefficients. Given a vector n=(n_0,...,n_m) with nonnegative integer coefficients, we develop a method to systematically associate a parameter-varying integral to study the asymptotic behavior of the coefficient of z^{n_0} of the Taylor series of (f_1(z))^{n_1}...(f_m(z))^{n_m}, as ||n|| tends to infinity. The associated parameter-varying integral has a phase term with well specified properties that make the asymptotic analysis of the integral amenable to saddle-point methods: for many directions d in S, these methods ensure uniform asymptotic expansions for the Taylor coefficient of z^{n_0} of (f_1(z))^{n_1}...(f_m(z))^{n_m}, provided that n/||n|| stays sufficiently close to d as ||n|| blows up to infinity. Our method finds applications in studying the asymptotic behavior of the coefficients of a certain multivariable generating functions as well as in problems related to the Lagrange inversion formula for instance in the context random planar maps.Comment: 14 page
    • …
    corecore