177,706 research outputs found

    Calibrated Prediction Intervals for Neural Network Regressors

    Get PDF
    Ongoing developments in neural network models are continually advancing the state of the art in terms of system accuracy. However, the predicted labels should not be regarded as the only core output; also important is a well-calibrated estimate of the prediction uncertainty. Such estimates and their calibration are critical in many practical applications. Despite their obvious aforementioned advantage in relation to accuracy, contemporary neural networks can, generally, be regarded as poorly calibrated and as such do not produce reliable output probability estimates. Further, while post-processing calibration solutions can be found in the relevant literature, these tend to be for systems performing classification. In this regard, we herein present two novel methods for acquiring calibrated predictions intervals for neural network regressors: empirical calibration and temperature scaling. In experiments using different regression tasks from the audio and computer vision domains, we find that both our proposed methods are indeed capable of producing calibrated prediction intervals for neural network regressors with any desired confidence level, a finding that is consistent across all datasets and neural network architectures we experimented with. In addition, we derive an additional practical recommendation for producing more accurate calibrated prediction intervals. We release the source code implementing our proposed methods for computing calibrated predicted intervals. The code for computing calibrated predicted intervals is publicly available

    Contact intervals, survival analysis of epidemic data, and estimation of R_0

    Full text link
    We argue that the time from the onset of infectiousness to infectious contact, which we call the contact interval, is a better basis for inference in epidemic data than the generation or serial interval. Since contact intervals can be right-censored, survival analysis is the natural approach to estimation. Estimates of the contact interval distribution can be used to estimate R_0 in both mass-action and network-based models.Comment: 30 pages, 4 figures; submitted to Biostatistic

    The ROMES method for statistical modeling of reduced-order-model error

    Full text link
    This work presents a technique for statistically modeling errors introduced by reduced-order models. The method employs Gaussian-process regression to construct a mapping from a small number of computationally inexpensive `error indicators' to a distribution over the true error. The variance of this distribution can be interpreted as the (epistemic) uncertainty introduced by the reduced-order model. To model normed errors, the method employs existing rigorous error bounds and residual norms as indicators; numerical experiments show that the method leads to a near-optimal expected effectivity in contrast to typical error bounds. To model errors in general outputs, the method uses dual-weighted residuals---which are amenable to uncertainty control---as indicators. Experiments illustrate that correcting the reduced-order-model output with this surrogate can improve prediction accuracy by an order of magnitude; this contrasts with existing `multifidelity correction' approaches, which often fail for reduced-order models and suffer from the curse of dimensionality. The proposed error surrogates also lead to a notion of `probabilistic rigor', i.e., the surrogate bounds the error with specified probability

    Dynamic Control of Explore/Exploit Trade-Off In Bayesian Optimization

    Full text link
    Bayesian optimization offers the possibility of optimizing black-box operations not accessible through traditional techniques. The success of Bayesian optimization methods such as Expected Improvement (EI) are significantly affected by the degree of trade-off between exploration and exploitation. Too much exploration can lead to inefficient optimization protocols, whilst too much exploitation leaves the protocol open to strong initial biases, and a high chance of getting stuck in a local minimum. Typically, a constant margin is used to control this trade-off, which results in yet another hyper-parameter to be optimized. We propose contextual improvement as a simple, yet effective heuristic to counter this - achieving a one-shot optimization strategy. Our proposed heuristic can be swiftly calculated and improves both the speed and robustness of discovery of optimal solutions. We demonstrate its effectiveness on both synthetic and real world problems and explore the unaccounted for uncertainty in the pre-determination of search hyperparameters controlling explore-exploit trade-off.Comment: Accepted for publication in the proceedings of 2018 Computing Conferenc
    • …
    corecore